{"title":"Comparison of MIROC5 and MIROC6 projections for precipitation over South Korea","authors":"S. Chae","doi":"10.3741/JKWRA.2021.54.4.229","DOIUrl":null,"url":null,"abstract":"This study projected the monthly precipitation for RCP4.5 and RCP8.5 of the MIROC5 and SSP2-4.5 and SSP5-8.5 of MIROC6 GCMs using observations of the historical period (1970 to 2005) of 21 stations in Korea, and then compared the performance before and after bias correction using 6 evaluation indicators. In addition, using the bias corrected GCM’s scenarios, annual precipitation, summer precipitation and winter precipitation in near future period (2021-2060) and far future period (2061-2100) were calculated. Furthermore, the variability of future projection was quantified using the standard deviation and interquartile range values of future precipitation. As a result the rate of change of precipitation was greater in the northern region than in the southern region and in the far future rather than the near future. The variability in the projection were also concluded to be larger in the northern region than that in the southern regions.","PeriodicalId":224359,"journal":{"name":"Journal of Korea Water Resources Association","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korea Water Resources Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3741/JKWRA.2021.54.4.229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study projected the monthly precipitation for RCP4.5 and RCP8.5 of the MIROC5 and SSP2-4.5 and SSP5-8.5 of MIROC6 GCMs using observations of the historical period (1970 to 2005) of 21 stations in Korea, and then compared the performance before and after bias correction using 6 evaluation indicators. In addition, using the bias corrected GCM’s scenarios, annual precipitation, summer precipitation and winter precipitation in near future period (2021-2060) and far future period (2061-2100) were calculated. Furthermore, the variability of future projection was quantified using the standard deviation and interquartile range values of future precipitation. As a result the rate of change of precipitation was greater in the northern region than in the southern region and in the far future rather than the near future. The variability in the projection were also concluded to be larger in the northern region than that in the southern regions.