{"title":"Rank-1/2: A Simple Way to Improve the OLS Estimation of Tail Exponents","authors":"X. Gabaix, R. Ibragimov","doi":"10.2139/ssrn.881759","DOIUrl":null,"url":null,"abstract":"Despite the availability of more sophisticated methods, a popular way to estimate a Pareto exponent is still to run an OLS regression: log(Rank)=a-b log(Size), and take b as an estimate of the Pareto exponent. The reason for this popularity is arguably the simplicity and robustness of this method. Unfortunately, this procedure is strongly biased in small samples. We provide a simple practical remedy for this bias, and propose that, if one wants to use an OLS regression, one should use the Rank-1/2, and run log(Rank-1/2)=a-b log(Size). The shift of 1/2 is optimal, and reduces the bias to a leading order. The standard error on the Pareto exponent zeta is not the OLS standard error, but is asymptotically (2/n)^(1/2) zeta. Numerical results demonstrate the advantage of the proposed approach over the standard OLS estimation procedures and indicate that it performs well under dependent heavy-tailed processes exhibiting deviations from power laws. The estimation procedures considered are illustrated using an empirical application to Zipf's law for the U.S. city size distribution.","PeriodicalId":124312,"journal":{"name":"New York University Stern School of Business Research Paper Series","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"105","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New York University Stern School of Business Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.881759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 105
Abstract
Despite the availability of more sophisticated methods, a popular way to estimate a Pareto exponent is still to run an OLS regression: log(Rank)=a-b log(Size), and take b as an estimate of the Pareto exponent. The reason for this popularity is arguably the simplicity and robustness of this method. Unfortunately, this procedure is strongly biased in small samples. We provide a simple practical remedy for this bias, and propose that, if one wants to use an OLS regression, one should use the Rank-1/2, and run log(Rank-1/2)=a-b log(Size). The shift of 1/2 is optimal, and reduces the bias to a leading order. The standard error on the Pareto exponent zeta is not the OLS standard error, but is asymptotically (2/n)^(1/2) zeta. Numerical results demonstrate the advantage of the proposed approach over the standard OLS estimation procedures and indicate that it performs well under dependent heavy-tailed processes exhibiting deviations from power laws. The estimation procedures considered are illustrated using an empirical application to Zipf's law for the U.S. city size distribution.