N. Kozhuhova, V. Strokova, M. Kozhuhova, I. Zhernovskiy
{"title":"STRUCTURE FORMATION IN ALKALI ACTIVATED ALUMINOSILICATE BINDING SYSTEMS USING NATURAL RAW MATERIALS WITH DIFFERENT CRYSTALLINITY DEGREE","authors":"N. Kozhuhova, V. Strokova, M. Kozhuhova, I. Zhernovskiy","doi":"10.34031/2618-7183-2018-1-4-38-43","DOIUrl":null,"url":null,"abstract":"the efficiency of traditional raw materials using as well as expanding of potential uses for non-conventional and alternative raw materials with different origin is the tasks exiting interest among material scientists and manufacture stuff. Investigation of the above is oriented on solution of such scientific problem as more deep understanding of structure and features of material. The results obtained also allow solution of some technological, technical and economical tasks. \nGreatly, it is actual when using of new types of raw materials as well as when synthesis of new composites. Concerning the construction material science field, the classic problem is the looking for ways to study the reactivity of raw components under different conditions, its control and, generally, its increasing to produce higher performance materials. \nAmong the popular and widely-used construction materials are alkali-activated binders and relevant composites. \nIn this study the results of granulometric analysis of suspension based on alkali-activated aluminosilicate with different crystallinity degree are presented. It was found, when treatment of aluminosilicate grain by alkali activator leads to the grain solubilizing (but differently depending on crystallinity degree of aluminosilicate) and formation of alkali-aluminosilicate gel that reacts with unreacted part of the grain according to structure affinity principle. It was also determined the crystallinity degree of aluminosilicate component is inversely proportional to its solubility in highly-alkali environment. The model of structure formation for geopolymer system under alkali effect is offered.","PeriodicalId":127090,"journal":{"name":"Construction Materials and Products","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction Materials and Products","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34031/2618-7183-2018-1-4-38-43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
the efficiency of traditional raw materials using as well as expanding of potential uses for non-conventional and alternative raw materials with different origin is the tasks exiting interest among material scientists and manufacture stuff. Investigation of the above is oriented on solution of such scientific problem as more deep understanding of structure and features of material. The results obtained also allow solution of some technological, technical and economical tasks.
Greatly, it is actual when using of new types of raw materials as well as when synthesis of new composites. Concerning the construction material science field, the classic problem is the looking for ways to study the reactivity of raw components under different conditions, its control and, generally, its increasing to produce higher performance materials.
Among the popular and widely-used construction materials are alkali-activated binders and relevant composites.
In this study the results of granulometric analysis of suspension based on alkali-activated aluminosilicate with different crystallinity degree are presented. It was found, when treatment of aluminosilicate grain by alkali activator leads to the grain solubilizing (but differently depending on crystallinity degree of aluminosilicate) and formation of alkali-aluminosilicate gel that reacts with unreacted part of the grain according to structure affinity principle. It was also determined the crystallinity degree of aluminosilicate component is inversely proportional to its solubility in highly-alkali environment. The model of structure formation for geopolymer system under alkali effect is offered.