A Model for Traffic Forwarding through Service Function Chaining using Deep Reinforcement Learning Techniques

Silvio Romero de Araújo Júnior, Reinaldo A. C. Bianchi
{"title":"A Model for Traffic Forwarding through Service Function Chaining using Deep Reinforcement Learning Techniques","authors":"Silvio Romero de Araújo Júnior, Reinaldo A. C. Bianchi","doi":"10.5753/eniac.2021.18289","DOIUrl":null,"url":null,"abstract":"The development of new communication networks to offer innovative services has increased the volume of data. With the introduction of Deep Reinforcement Learning and Service Function Chaining architecture, new research opportunities have emerged to propose solutions to the new challenges. This work proposes a model through computational simulations how these techniques can be applied. The model was evaluated using two variations of the Deep Q-Network algorithm over the CIC-Darknet dataset. Results showed that both variations are a promising mechanism to make the networks more autonomous and intelligent. to demonstrate","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The development of new communication networks to offer innovative services has increased the volume of data. With the introduction of Deep Reinforcement Learning and Service Function Chaining architecture, new research opportunities have emerged to propose solutions to the new challenges. This work proposes a model through computational simulations how these techniques can be applied. The model was evaluated using two variations of the Deep Q-Network algorithm over the CIC-Darknet dataset. Results showed that both variations are a promising mechanism to make the networks more autonomous and intelligent. to demonstrate
基于深度强化学习技术的业务功能链流量转发模型
为提供创新服务而发展的新通信网络增加了数据量。随着深度强化学习和服务功能链架构的引入,新的研究机会出现了,为新的挑战提出了解决方案。这项工作通过计算模拟提出了一个如何应用这些技术的模型。该模型在CIC-Darknet数据集上使用Deep Q-Network算法的两种变体进行评估。结果表明,这两种变化都是一种很有希望的机制,可以使网络更加自治和智能。为了演示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信