Recurrent Network with Attention for Symbol Detection in Communication Systems

K. Chia, Vishnu Monn Baskaran, Koksheik Wong, M. L. Sim, Chong Hin Chee
{"title":"Recurrent Network with Attention for Symbol Detection in Communication Systems","authors":"K. Chia, Vishnu Monn Baskaran, Koksheik Wong, M. L. Sim, Chong Hin Chee","doi":"10.1109/ISPACS57703.2022.10082803","DOIUrl":null,"url":null,"abstract":"One major challenge for wireless receivers to maintain information fidelity involves the demodulation of faded signals in noisy environments. Typical demodulation techniques for M-ary quadrature amplitude modulated (M-QAM) signal utilize variants of coherent demodulation. This paper explores deep learning (DL), specifically by using a proposed architecture recurrent-attention networks to compliment, or even overcome the limitations of demodulating M-QAM symbols. The proposed model is shown to outperform the benchmark coherent demodulator and other DL-based demodulators such as convolutional neural network (CNN), recurrent neural network (RNN) and the hybrid of both up to 5 dB learning gain at a lower model complexity and requires less memory usage.","PeriodicalId":410603,"journal":{"name":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS57703.2022.10082803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One major challenge for wireless receivers to maintain information fidelity involves the demodulation of faded signals in noisy environments. Typical demodulation techniques for M-ary quadrature amplitude modulated (M-QAM) signal utilize variants of coherent demodulation. This paper explores deep learning (DL), specifically by using a proposed architecture recurrent-attention networks to compliment, or even overcome the limitations of demodulating M-QAM symbols. The proposed model is shown to outperform the benchmark coherent demodulator and other DL-based demodulators such as convolutional neural network (CNN), recurrent neural network (RNN) and the hybrid of both up to 5 dB learning gain at a lower model complexity and requires less memory usage.
通信系统中符号检测的注意递归网络
无线接收器维持资讯保真度的主要挑战之一,是如何在杂讯环境中解调消褪讯号。典型的正交调幅(M-QAM)信号解调技术利用相干解调的变体。本文探讨了深度学习(DL),特别是通过使用提出的架构循环注意网络来补充甚至克服解调M-QAM符号的限制。所提出的模型被证明优于基准相干解调器和其他基于dl的解调器,如卷积神经网络(CNN),循环神经网络(RNN)以及两者的混合,以更低的模型复杂度和更少的内存使用获得高达5 dB的学习增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信