CO2 and Nd:YAG laser cladding using Stellite 6

A. Jansson, J. Ion, V. Kujanpaeae
{"title":"CO2 and Nd:YAG laser cladding using Stellite 6","authors":"A. Jansson, J. Ion, V. Kujanpaeae","doi":"10.1117/12.497603","DOIUrl":null,"url":null,"abstract":"Cladding of an austenitic stainless steel with the cobalt-based alloy Stellite 6, a trademark of Deloro Co, has been investigated by using both CO2 and Nd:YAG laser beams. This material is used for hardfacing in a number of industries, notably power generation and heavy engineering. Alloy powder was fed into the laser beam by using argon as a carrier gas. Clads were produced with a range of processing parameters, and sectioned for metallographic examination. Hardness values measured in the clads increased to a maximum with an increase in powder feed rate. This correlated with a decrease in the dendrite arm spacing observed in the micrographs. Abrasive wear testing also indicated that a finer microstructure resulted in improved properties. The Nd:YAG laser beam was found to be more efficient for melting the powder because it is absorbed to a greater extent than the CO2 laser beam. Cladding procedures were developed for both types of laser, and it is shown that in order to maximize in-service performance, the energy input of the process should be minimized.","PeriodicalId":159280,"journal":{"name":"International Congress on Laser Advanced Materials Processing","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Congress on Laser Advanced Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.497603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cladding of an austenitic stainless steel with the cobalt-based alloy Stellite 6, a trademark of Deloro Co, has been investigated by using both CO2 and Nd:YAG laser beams. This material is used for hardfacing in a number of industries, notably power generation and heavy engineering. Alloy powder was fed into the laser beam by using argon as a carrier gas. Clads were produced with a range of processing parameters, and sectioned for metallographic examination. Hardness values measured in the clads increased to a maximum with an increase in powder feed rate. This correlated with a decrease in the dendrite arm spacing observed in the micrographs. Abrasive wear testing also indicated that a finer microstructure resulted in improved properties. The Nd:YAG laser beam was found to be more efficient for melting the powder because it is absorbed to a greater extent than the CO2 laser beam. Cladding procedures were developed for both types of laser, and it is shown that in order to maximize in-service performance, the energy input of the process should be minimized.
采用钨铬钴合金6进行CO2和Nd:YAG激光熔覆
采用CO2和Nd:YAG激光束研究了用Deloro公司的商标钴基合金Stellite 6包覆奥氏体不锈钢。这种材料用于堆焊在许多行业,特别是发电和重型工程。以氩气为载气,将合金粉末送入激光束。用一系列的工艺参数生产了包层,并进行了金相检查。熔覆层的硬度值随着粉末进给量的增加而增加到最大值。这与显微照片中观察到的枝晶臂间距减小有关。磨料磨损试验也表明,微观组织越细,性能越好。Nd:YAG激光束被发现对熔化粉末更有效,因为它比CO2激光束被吸收到更大的程度。为这两种类型的激光器开发了熔覆程序,并表明,为了最大限度地提高服役性能,该过程的能量输入应最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信