Victoria Obrien, Vittal S. Rao, Rodrigo D. Trevizan
{"title":"Detection of False Data Injection Attacks in Ambient Temperature-Dependent Battery Stacks","authors":"Victoria Obrien, Vittal S. Rao, Rodrigo D. Trevizan","doi":"10.1109/eesat55007.2022.9998042","DOIUrl":null,"url":null,"abstract":"The state of charge (SoC) estimated by Battery Management Systems (BMSs) could be vulnerable to False Data Injection Attacks (FDIAs), which aim to disturb state estimation. Inaccurate SoC estimation, due to attacks or suboptimal estimators, could lead to thermal runaway, accelerated degradation of batteries, and other undesirable events. In this paper, an ambient temperature-dependent model is adopted to represent the physics of a stack of three series-connected battery cells, and an Unscented Kalman Filter (UKF) is utilized to estimate the SoC for each cell. A Cumulative Sum (CUSUM) algorithm is used to detect FDIAs targeting the voltage sensors in the battery stack. The UKF was more accurate in state and measurement estimation than the Extended Kalman Filter (EKF) for Maximum Absolute Error (MAE) and Root Mean Squared Error (RMSE). The CUSUM algorithm described in this paper was able to detect attacks as low as ±1 mV when one or more voltage sensor was attacked under various ambient temperatures and attack injection times.","PeriodicalId":310250,"journal":{"name":"2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eesat55007.2022.9998042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The state of charge (SoC) estimated by Battery Management Systems (BMSs) could be vulnerable to False Data Injection Attacks (FDIAs), which aim to disturb state estimation. Inaccurate SoC estimation, due to attacks or suboptimal estimators, could lead to thermal runaway, accelerated degradation of batteries, and other undesirable events. In this paper, an ambient temperature-dependent model is adopted to represent the physics of a stack of three series-connected battery cells, and an Unscented Kalman Filter (UKF) is utilized to estimate the SoC for each cell. A Cumulative Sum (CUSUM) algorithm is used to detect FDIAs targeting the voltage sensors in the battery stack. The UKF was more accurate in state and measurement estimation than the Extended Kalman Filter (EKF) for Maximum Absolute Error (MAE) and Root Mean Squared Error (RMSE). The CUSUM algorithm described in this paper was able to detect attacks as low as ±1 mV when one or more voltage sensor was attacked under various ambient temperatures and attack injection times.