Automated Plagiarism Detection Model Based On Deep Siamese Network

Jing Zhang, Siyuan Xue, Jierui Li, Jian She
{"title":"Automated Plagiarism Detection Model Based On Deep Siamese Network","authors":"Jing Zhang, Siyuan Xue, Jierui Li, Jian She","doi":"10.1109/ccis57298.2022.10016354","DOIUrl":null,"url":null,"abstract":"This paper presents a novel deep Siamese network for automatic plagiarism detection. Our model utilizes a large-scale pre-trained model BERT (bidirectional encoder representations from transformers) to represent the text as word vector, and uses Bi-LSTM (bidirectional long short-term memory) net works to obtain the contextual semantic features of the text, and designs a text semantic interaction me chanism to obtain the interactive semantic features. Our model uses Siamese network to uniformly map matched text pairs into the same parameter matrix s pace. Meanwhile, our model uses multi-head self-attention to fuse text pair vectors for accurate semantic alignment and similarity measures. The experiment al results show that the effect of this model can identify and detect plagiarized text.","PeriodicalId":374660,"journal":{"name":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ccis57298.2022.10016354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel deep Siamese network for automatic plagiarism detection. Our model utilizes a large-scale pre-trained model BERT (bidirectional encoder representations from transformers) to represent the text as word vector, and uses Bi-LSTM (bidirectional long short-term memory) net works to obtain the contextual semantic features of the text, and designs a text semantic interaction me chanism to obtain the interactive semantic features. Our model uses Siamese network to uniformly map matched text pairs into the same parameter matrix s pace. Meanwhile, our model uses multi-head self-attention to fuse text pair vectors for accurate semantic alignment and similarity measures. The experiment al results show that the effect of this model can identify and detect plagiarized text.
基于深度暹罗网络的自动抄袭检测模型
本文提出了一种新颖的深度连体网络用于自动抄袭检测。该模型利用大规模预训练模型BERT(双向编码器表示)将文本表示为词向量,利用双向长短期记忆(Bi-LSTM)网络获取文本的语境语义特征,并设计文本语义交互机制获取文本的交互语义特征。我们的模型使用Siamese网络将匹配的文本对统一映射到相同的参数矩阵中。同时,我们的模型使用多头自关注来融合文本对向量,以获得准确的语义对齐和相似度度量。实验结果表明,该模型能够有效地识别和检测抄袭文本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信