Online Fault-Tolerance for Memristive Neuromorphic Fabric Based on Local Approximation

Soyed Tuhin Ahmed, R. Rakhmatullin, M. Tahoori
{"title":"Online Fault-Tolerance for Memristive Neuromorphic Fabric Based on Local Approximation","authors":"Soyed Tuhin Ahmed, R. Rakhmatullin, M. Tahoori","doi":"10.1109/ETS56758.2023.10174237","DOIUrl":null,"url":null,"abstract":"Neural networks (NNs) are a widely-used problem-solving tool, but their high computational and power consumption makes them expensive. Computation-in-Memory (CiM) architecture, which uses resistive non-volatile memories, is a promising solution due to its high energy efficiency. However, manufacturing defects and in-field faults can reduce the reliability and inference accuracy of CiM-implemented neural networks. Existing sophisticated fault detection and tolerance techniques require long downtime for testing and repair. In certain applications, e.g., \"always on\" NN applications, such downtime may not be acceptable. Thus, in this paper, a low-cost online fault tolerance technique based on local approximations is proposed to ensure continuous neural network operation with acceptable accuracy. Our approach reduces hardware overhead by up to 99.37% compared to conventional redundancy-based approaches while still achieving accuracy within 2% of the trained NNs.","PeriodicalId":211522,"journal":{"name":"2023 IEEE European Test Symposium (ETS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS56758.2023.10174237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Neural networks (NNs) are a widely-used problem-solving tool, but their high computational and power consumption makes them expensive. Computation-in-Memory (CiM) architecture, which uses resistive non-volatile memories, is a promising solution due to its high energy efficiency. However, manufacturing defects and in-field faults can reduce the reliability and inference accuracy of CiM-implemented neural networks. Existing sophisticated fault detection and tolerance techniques require long downtime for testing and repair. In certain applications, e.g., "always on" NN applications, such downtime may not be acceptable. Thus, in this paper, a low-cost online fault tolerance technique based on local approximations is proposed to ensure continuous neural network operation with acceptable accuracy. Our approach reduces hardware overhead by up to 99.37% compared to conventional redundancy-based approaches while still achieving accuracy within 2% of the trained NNs.
基于局部逼近的记忆神经形态网络在线容错
神经网络(nn)是一种广泛使用的解决问题的工具,但其高计算和功耗使其昂贵。内存计算(CiM)架构使用电阻式非易失性存储器,由于其高能效而成为一种很有前途的解决方案。然而,制造缺陷和现场故障会降低基于cim的神经网络的可靠性和推理精度。现有复杂的故障检测和容限技术需要长时间的停机时间进行测试和修复。在某些应用中,例如,“始终在线”的神经网络应用,这样的停机时间可能是不可接受的。为此,本文提出了一种基于局部逼近的低成本在线容错技术,以保证神经网络以可接受的精度连续运行。与传统的基于冗余的方法相比,我们的方法减少了高达99.37%的硬件开销,同时仍然在训练好的神经网络的2%以内实现准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信