PENERAPAN JARINGAN SYARAF TIRUAN BACKPROPAGATION PADA PERAMALAN CURAH HUJAN DI KOTA KENDARI

Rezky Abelia, R Kayumov Ruslan, Lilis Laome, Baharuddin Baharuddin, Makkulau Makkulau, Agusrawati Agusrawati
{"title":"PENERAPAN JARINGAN SYARAF TIRUAN BACKPROPAGATION PADA PERAMALAN CURAH HUJAN DI KOTA KENDARI","authors":"Rezky Abelia, R Kayumov Ruslan, Lilis Laome, Baharuddin Baharuddin, Makkulau Makkulau, Agusrawati Agusrawati","doi":"10.33772/jmks.v2i2.18","DOIUrl":null,"url":null,"abstract":"Jaringan Syaraf Tiruan (JST) merupakan sebuah sistem pemrosesan data yang meniru cara kerja sistem syaraf manusia, yang terdiri atas banyak elemen pemrosesan sederhana yang terhubung secara paralel. Backpropagation merupakan salah satu algoritma JST yang sederhana dengan kemampuan dan akurasi yang tinggi. Salah satu implementasi JST yaitu pada peramalan curah hujan. Kota Kendari adalah salah satu daerah yang mengalami berbagai dampak negatif akibat curah hujan tinggi maupun curah hujan rendah, diantaranya adalah banjir, gagal panen, dan penurunan produktivitas tanaman tertentu. Tujuan dari penelitian ini yaitu untuk mengetahui model peramalan curah hujan bulanan di Kota Kendari menggunakan Jaringan Syaraf Tiruan Backpropagation. Arsitektur jaringan terbaik yang diperoleh dari penelitian ini memiliki nilai MAPE pengujian sebesar 19,15%, yang menunjukkan bahwa kemampuan model jaringan termasuk ‘baik’ untuk peramalan. Jaringan tersebut memiliki laju pembelajaran sebesar 0,01 dan neuron lapisan tersembunyi sebanyak 70 unit, dengan parameter-parameter lainnya bernilai tetap yaitu 1 lapisan tersembunyi, jumlah maksimum iterasi sebanyak 106 dan nilai ambang sebesar 0,005.","PeriodicalId":253418,"journal":{"name":"Jurnal Matematika Komputasi dan Statistika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Matematika Komputasi dan Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33772/jmks.v2i2.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Jaringan Syaraf Tiruan (JST) merupakan sebuah sistem pemrosesan data yang meniru cara kerja sistem syaraf manusia, yang terdiri atas banyak elemen pemrosesan sederhana yang terhubung secara paralel. Backpropagation merupakan salah satu algoritma JST yang sederhana dengan kemampuan dan akurasi yang tinggi. Salah satu implementasi JST yaitu pada peramalan curah hujan. Kota Kendari adalah salah satu daerah yang mengalami berbagai dampak negatif akibat curah hujan tinggi maupun curah hujan rendah, diantaranya adalah banjir, gagal panen, dan penurunan produktivitas tanaman tertentu. Tujuan dari penelitian ini yaitu untuk mengetahui model peramalan curah hujan bulanan di Kota Kendari menggunakan Jaringan Syaraf Tiruan Backpropagation. Arsitektur jaringan terbaik yang diperoleh dari penelitian ini memiliki nilai MAPE pengujian sebesar 19,15%, yang menunjukkan bahwa kemampuan model jaringan termasuk ‘baik’ untuk peramalan. Jaringan tersebut memiliki laju pembelajaran sebesar 0,01 dan neuron lapisan tersembunyi sebanyak 70 unit, dengan parameter-parameter lainnya bernilai tetap yaitu 1 lapisan tersembunyi, jumlah maksimum iterasi sebanyak 106 dan nilai ambang sebesar 0,005.
人工神经网络是一种模仿人类神经系统工作方式的数据处理系统,它包含许多平行连接的简单处理元素。推广是JST最简单的具有高精度和能力的算法之一。JST的目的之一是预测降水。肯达里市是遭受高降水和低降水负面影响的地区之一,其中包括洪水、作物歉收和某些作物生产力下降。这项研究的目的是了解肯达里市的月降水模型,该模型使用的是一种人工神经传播网络。从这项研究中获得的最好的网络架构具有19.15%的MAPE测试值,这表明网络模型的功能包括预测“好”。该网络的学习速度为0.01,神经元的隐藏层为70个单元,其其他参数值为1个隐藏层,最大重复率为106,阈值为0.005。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信