V. Khomutov, R. Shimansky, R. K. Nasyrov, V. Korolkov
{"title":"Principles of operation and prospects for the development of laser lithographic systems for the synthesis of optical elements","authors":"V. Khomutov, R. Shimansky, R. K. Nasyrov, V. Korolkov","doi":"10.1117/12.2597050","DOIUrl":null,"url":null,"abstract":"The development and research of new devices and systems of diffractive and integrated optics, which based on elements with thin-layer micro- and nanostructures, requires the improvement of the technological base. The most massive and lowcost is planar optical elements, on the surface of which diffractive and raster computer-synthesized micro- and nanostructures are formed, as well as structures based on synthesized metamaterials. In recent years, off-axis and axisymmetric computer-synthesized holograms for control and alignment of optical systems, microstructured optical elements with 3D microrelief for complex transformations of wavefronts and intensity distributions of light beams (micro-optics), integrated-optical passive and active circuits have been greatly developed. In this paper describes the principles of operation of two different scanning laser nanolithography system developed operating in a writing and polar coordinate system. Development and research work these lithographic systems were conducted at the Institute of Automation and Electrometry of the SB RAS for many years. The areas of applicability of these systems are described, their differences and technical limitations are considered. The emphasis is made on fundamentally similar units of installations of this class and the prerequisites for their unification are considered. Methods for increasing their resolution, speed and accuracy of writing are proposed, prospects and directions of their development are analyzed. The results of writing test optical elements on metal films using the described methods are demonstrated.","PeriodicalId":217586,"journal":{"name":"Optical Systems Design","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Systems Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2597050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The development and research of new devices and systems of diffractive and integrated optics, which based on elements with thin-layer micro- and nanostructures, requires the improvement of the technological base. The most massive and lowcost is planar optical elements, on the surface of which diffractive and raster computer-synthesized micro- and nanostructures are formed, as well as structures based on synthesized metamaterials. In recent years, off-axis and axisymmetric computer-synthesized holograms for control and alignment of optical systems, microstructured optical elements with 3D microrelief for complex transformations of wavefronts and intensity distributions of light beams (micro-optics), integrated-optical passive and active circuits have been greatly developed. In this paper describes the principles of operation of two different scanning laser nanolithography system developed operating in a writing and polar coordinate system. Development and research work these lithographic systems were conducted at the Institute of Automation and Electrometry of the SB RAS for many years. The areas of applicability of these systems are described, their differences and technical limitations are considered. The emphasis is made on fundamentally similar units of installations of this class and the prerequisites for their unification are considered. Methods for increasing their resolution, speed and accuracy of writing are proposed, prospects and directions of their development are analyzed. The results of writing test optical elements on metal films using the described methods are demonstrated.