Statistics of SPDEs: From Linear to Nonlinear

J. Bishwal
{"title":"Statistics of SPDEs: From Linear to Nonlinear","authors":"J. Bishwal","doi":"10.28924/ada/stat.1.1","DOIUrl":null,"url":null,"abstract":"We study statistical inference for stochastic partial differential equations (SPDEs). Though inference linear SPDEs have been studied well (with lot of problems still remain to be investigated) in the last two decades, inference for nonlinear SPDEs is in its infancy. The inference methods use both inference for finite-dimensional diffusions and inference for classical i.i.d. sequences. Solving 2D Navier-Stokes equation is one of the challenging problem of the last century. However, with additive white noise, the equation has a strong solution. We estimate the viscosity coefficient of the 2D stochastic Navier-Stokes (SNS) equation by minimum contrast method. We show $n$ consistency in contrast to $\\sqrt n$ consistency in the classical i.i.d. case where $n$ is the number of observations. We consider both continuous and discrete observations in time. We also obtain the Berry-Esseen bounds. Then we estimate and control the Type I and Type II error of a simple hypothesis testing problem of the viscosity coefficient of the SNS equation. We study a class of rejection regions and provide thresholds that guarantee that the statistical errors are smaller than the given upper bound. The tests are of likelihood ratio type. The proofs are based on the large deviation bounds. Finally we give Monte Carlo test procedure for simulated data.","PeriodicalId":153849,"journal":{"name":"European Journal of Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/ada/stat.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We study statistical inference for stochastic partial differential equations (SPDEs). Though inference linear SPDEs have been studied well (with lot of problems still remain to be investigated) in the last two decades, inference for nonlinear SPDEs is in its infancy. The inference methods use both inference for finite-dimensional diffusions and inference for classical i.i.d. sequences. Solving 2D Navier-Stokes equation is one of the challenging problem of the last century. However, with additive white noise, the equation has a strong solution. We estimate the viscosity coefficient of the 2D stochastic Navier-Stokes (SNS) equation by minimum contrast method. We show $n$ consistency in contrast to $\sqrt n$ consistency in the classical i.i.d. case where $n$ is the number of observations. We consider both continuous and discrete observations in time. We also obtain the Berry-Esseen bounds. Then we estimate and control the Type I and Type II error of a simple hypothesis testing problem of the viscosity coefficient of the SNS equation. We study a class of rejection regions and provide thresholds that guarantee that the statistical errors are smaller than the given upper bound. The tests are of likelihood ratio type. The proofs are based on the large deviation bounds. Finally we give Monte Carlo test procedure for simulated data.
spde的统计:从线性到非线性
研究了随机偏微分方程的统计推断。虽然在过去的二十年里,推理线性spde已经得到了很好的研究(还有很多问题有待研究),但非线性spde的推理还处于起步阶段。推理方法采用有限维扩散推理和经典i - id序列推理两种方法。求解二维Navier-Stokes方程是上个世纪最具挑战性的问题之一。然而,在加性白噪声条件下,该方程具有强解。用最小对比法估计了二维随机Navier-Stokes (SNS)方程的粘滞系数。我们显示了$n$一致性,而不是在经典的i.i.d情况下的$\sqrt n$一致性,其中$n$是观测值的数量。我们同时考虑时间上的连续和离散观测。我们也得到了Berry-Esseen界。然后对SNS方程黏度系数的一个简单假设检验问题的I型和II型误差进行估计和控制。我们研究了一类拒绝区域,并提供了保证统计误差小于给定上界的阈值。检验是似然比类型。这些证明是基于大偏差界的。最后给出了模拟数据的蒙特卡罗测试程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信