Study on Key Technology of Topic Tracking Based on SVM

Shengdong Li, Xueqiang Lv, Yuqin Li, Shuicai Shi
{"title":"Study on Key Technology of Topic Tracking Based on SVM","authors":"Shengdong Li, Xueqiang Lv, Yuqin Li, Shuicai Shi","doi":"10.1109/ICIE.2010.99","DOIUrl":null,"url":null,"abstract":"Text classification is the key technology for topic tracking, and vector space model (VSM) is one of the most simple and effective model for topics representation. On the basis of VSM and support vector machines (SVM), we have studied how feature space dimension in VSM as well as linearly separable and non-separable SVM affect topic tracking. Then we get the variation law that they affect topic tracking, and add up their optimal values in topic tracking. Finally, TDT evaluation method proves that optimal topic tracking performance based on linearly separable SVM increases by 4.522% more than linearly non-separable SVM.","PeriodicalId":353239,"journal":{"name":"2010 WASE International Conference on Information Engineering","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 WASE International Conference on Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIE.2010.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Text classification is the key technology for topic tracking, and vector space model (VSM) is one of the most simple and effective model for topics representation. On the basis of VSM and support vector machines (SVM), we have studied how feature space dimension in VSM as well as linearly separable and non-separable SVM affect topic tracking. Then we get the variation law that they affect topic tracking, and add up their optimal values in topic tracking. Finally, TDT evaluation method proves that optimal topic tracking performance based on linearly separable SVM increases by 4.522% more than linearly non-separable SVM.
基于支持向量机的主题跟踪关键技术研究
文本分类是主题跟踪的关键技术,而向量空间模型(VSM)是最简单有效的主题表示模型之一。在VSM和支持向量机(SVM)的基础上,研究了VSM中的特征空间维度以及线性可分和不可分SVM对主题跟踪的影响。得到了它们对主题跟踪影响的变化规律,并对它们在主题跟踪中的最优值进行了相加。最后,TDT评价方法证明,基于线性可分SVM的最优主题跟踪性能比线性不可分SVM提高了4.522%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信