Performance of spatially multiplexed systems based on numerical simulations of OFDM-MIMO in a two-core fiber with low coupling, and a few mode fiber with high DGD
Claudia M. Serpa-Imbett, Jeison Marín-Alfonso, C. Gómez-Santamaría, L. Betancur, F. Amaya-Fernandez
{"title":"Performance of spatially multiplexed systems based on numerical simulations of OFDM-MIMO in a two-core fiber with low coupling, and a few mode fiber with high DGD","authors":"Claudia M. Serpa-Imbett, Jeison Marín-Alfonso, C. Gómez-Santamaría, L. Betancur, F. Amaya-Fernandez","doi":"10.1109/IMOC.2013.6646484","DOIUrl":null,"url":null,"abstract":"In this paper, we show numerical simulations for analyzing spatially multiplexed systems based on orthogonal frequency division multiplexing and multiple-input multiple-output Alamouti code in order to compare the performance of the transmission in a two-core fiber with low coupling, and in few-mode fiber with high differential group delay. These new fibers are the most recent alternatives used for improving the throughput of long-haul and high-speed optical fiber networks. We compare the bit-error-rate of two orthogonal frequency division multiplexing signals, after 100 km of optical fiber, considering only its linear effects. The first one uses an 8 phase-shift keying signal operating at 130 Gbps, and the second one uses a 16 quadrature amplitude modulated signal operating at 170 Gbps. Our results show a better bit error rate performance using a few-mode fiber, compared with a two-core fiber. Additionally, Alamouti code shows a better effectiveness for compensation of linear impairments in a two-core fiber in comparison with a few-mode fiber.","PeriodicalId":395359,"journal":{"name":"2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMOC.2013.6646484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we show numerical simulations for analyzing spatially multiplexed systems based on orthogonal frequency division multiplexing and multiple-input multiple-output Alamouti code in order to compare the performance of the transmission in a two-core fiber with low coupling, and in few-mode fiber with high differential group delay. These new fibers are the most recent alternatives used for improving the throughput of long-haul and high-speed optical fiber networks. We compare the bit-error-rate of two orthogonal frequency division multiplexing signals, after 100 km of optical fiber, considering only its linear effects. The first one uses an 8 phase-shift keying signal operating at 130 Gbps, and the second one uses a 16 quadrature amplitude modulated signal operating at 170 Gbps. Our results show a better bit error rate performance using a few-mode fiber, compared with a two-core fiber. Additionally, Alamouti code shows a better effectiveness for compensation of linear impairments in a two-core fiber in comparison with a few-mode fiber.