Forecasting Latent Volatility Through a Markov Chain Approximation Filter

C. Lo, K. Skindilias, Andreas S. Karathanasopoulos
{"title":"Forecasting Latent Volatility Through a Markov Chain Approximation Filter","authors":"C. Lo, K. Skindilias, Andreas S. Karathanasopoulos","doi":"10.2139/ssrn.2540514","DOIUrl":null,"url":null,"abstract":"We propose a new methodology for filtering and forecasting the latent variance in a two-factor diffusion process with jumps from a continuous time perspective. For this purpose we use a continuous time Markov chain approximation with a finite state space. Essentially, we extend Markov chain filters to processes of higher dimensions. We assess forecastability of the models under consideration by measuring forecast error of model expected realised variance, trading in variance swap contracts, producing Value-at-Risk estimates as well as examining sign forecastability. We provide empirical evidence using two sources, the S&P500 index values and its corresponding cumulative risk-neutral expected variance (namely the VIX index). Joint estimation reveals the market prices of equity and variance risk implicit by the two probability measures. A further simulation study shows that the proposed methodology can filter the variance of virtually any type of diffusion process (coupled with a jump process) with non-analytical density function.","PeriodicalId":177064,"journal":{"name":"ERN: Other Econometric Modeling: Derivatives (Topic)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Derivatives (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2540514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We propose a new methodology for filtering and forecasting the latent variance in a two-factor diffusion process with jumps from a continuous time perspective. For this purpose we use a continuous time Markov chain approximation with a finite state space. Essentially, we extend Markov chain filters to processes of higher dimensions. We assess forecastability of the models under consideration by measuring forecast error of model expected realised variance, trading in variance swap contracts, producing Value-at-Risk estimates as well as examining sign forecastability. We provide empirical evidence using two sources, the S&P500 index values and its corresponding cumulative risk-neutral expected variance (namely the VIX index). Joint estimation reveals the market prices of equity and variance risk implicit by the two probability measures. A further simulation study shows that the proposed methodology can filter the variance of virtually any type of diffusion process (coupled with a jump process) with non-analytical density function.
利用马尔可夫链逼近滤波器预测潜在波动率
我们提出了一种新的方法,从连续时间的角度对具有跳跃的双因素扩散过程中的潜在方差进行滤波和预测。为此,我们使用有限状态空间下的连续时间马尔可夫链近似。本质上,我们将马尔可夫链滤波器扩展到更高维度的过程。我们通过测量模型预期实现方差的预测误差、方差互换合约的交易、产生风险价值估计以及检查符号可预测性来评估所考虑的模型的可预测性。我们使用两个来源提供经验证据,标准普尔500指数值及其相应的累积风险中性预期方差(即VIX指数)。联合估计揭示了两种概率度量隐含的股票市场价格和方差风险。进一步的仿真研究表明,所提出的方法可以过滤非解析密度函数的几乎任何类型的扩散过程(加上跳跃过程)的方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信