Shaping a VLSI wire to minimize Elmore delay

J. Fishburn
{"title":"Shaping a VLSI wire to minimize Elmore delay","authors":"J. Fishburn","doi":"10.1109/EDTC.1997.582366","DOIUrl":null,"url":null,"abstract":"Euler's differential equation of the calculus of variations is used to determine the shape of a VLSI wire that minimizes Elmore delay. The solution is given as a power series whose coefficients are formulas involving the load-end wire width, the load capacitance, the capacitance per unit area, and the capacitance per unit perimeter. In contrast to an optimal-width rectangular wire, the RC Elmore delay of the optimally tapered wire goes to zero as the driver resistance goes to zero. The optimal taper is immune, to first order, to process variations affecting wire width.","PeriodicalId":297301,"journal":{"name":"Proceedings European Design and Test Conference. ED & TC 97","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings European Design and Test Conference. ED & TC 97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTC.1997.582366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

Euler's differential equation of the calculus of variations is used to determine the shape of a VLSI wire that minimizes Elmore delay. The solution is given as a power series whose coefficients are formulas involving the load-end wire width, the load capacitance, the capacitance per unit area, and the capacitance per unit perimeter. In contrast to an optimal-width rectangular wire, the RC Elmore delay of the optimally tapered wire goes to zero as the driver resistance goes to zero. The optimal taper is immune, to first order, to process variations affecting wire width.
塑造VLSI线以最小化Elmore延迟
欧拉变分微分方程用于确定最小化Elmore延迟的VLSI线的形状。其解以幂级数形式给出,其系数是包含负载端导线宽度、负载电容、单位面积电容和单位周长电容的公式。与最佳宽度矩形导线相比,当驱动器电阻为零时,最佳锥形导线的RC Elmore延迟为零。最佳锥度不受一阶工艺变化对线材宽度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信