Affinity propagation clustering on oral conversation texts

Ding Liu, Minghu Jiang
{"title":"Affinity propagation clustering on oral conversation texts","authors":"Ding Liu, Minghu Jiang","doi":"10.1109/ICOSP.2012.6492035","DOIUrl":null,"url":null,"abstract":"This article describes a method that applied the new clustering algorithm Affinity Propagation (AP) on oral conversation texts. And we used various measures of similarity to test the performance of this new algorithm. In our experiment, we compared the AP with the Self-Organizing Map (SOM) which is a kind of classical clustering algorithm. The experimental results showed us the Kullback-Leibler Divergence (Relative Entropy) is the best choice in affinity propagation algorithm, and it produced a better result than SOM","PeriodicalId":143331,"journal":{"name":"2012 IEEE 11th International Conference on Signal Processing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 11th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2012.6492035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This article describes a method that applied the new clustering algorithm Affinity Propagation (AP) on oral conversation texts. And we used various measures of similarity to test the performance of this new algorithm. In our experiment, we compared the AP with the Self-Organizing Map (SOM) which is a kind of classical clustering algorithm. The experimental results showed us the Kullback-Leibler Divergence (Relative Entropy) is the best choice in affinity propagation algorithm, and it produced a better result than SOM
口语会话文本的亲和传播聚类
本文描述了一种将新的聚类算法亲和力传播(Affinity Propagation, AP)应用于口语会话文本的方法。我们用不同的相似度来测试这个新算法的性能。在实验中,我们将AP与一种经典聚类算法自组织映射(SOM)进行了比较。实验结果表明,Kullback-Leibler散度(相对熵)是亲和传播算法的最佳选择,其结果优于SOM算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信