Polygon Subdivision Control Using SVM With CSF

Naoto Yoshii, S. Saito
{"title":"Polygon Subdivision Control Using SVM With CSF","authors":"Naoto Yoshii, S. Saito","doi":"10.1109/NicoInt55861.2022.00030","DOIUrl":null,"url":null,"abstract":"In 3D computer graphics, less is better if reducing the number of polygons in a model has no visual impact. In this paper, assuming a method that controls polygon subdivision level to reduce the rendering computational cost, we propose a method that uses a Support Vector Machine (SVM) to choose one from two subdivision levels by the perceptibility difference between the adjacent level of detail. The SVM takes four features obtained in the rendering procedure as input and performs a binary classification to determine whether a polygon should be divided or not. Our experimental results show that the trained SVM performs a binary classification with 72% accuracy.","PeriodicalId":328114,"journal":{"name":"2022 Nicograph International (NicoInt)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Nicograph International (NicoInt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NicoInt55861.2022.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 3D computer graphics, less is better if reducing the number of polygons in a model has no visual impact. In this paper, assuming a method that controls polygon subdivision level to reduce the rendering computational cost, we propose a method that uses a Support Vector Machine (SVM) to choose one from two subdivision levels by the perceptibility difference between the adjacent level of detail. The SVM takes four features obtained in the rendering procedure as input and performs a binary classification to determine whether a polygon should be divided or not. Our experimental results show that the trained SVM performs a binary classification with 72% accuracy.
基于CSF的SVM多边形细分控制
在3D计算机图形中,如果减少模型中多边形的数量不会对视觉产生影响,那么越少越好。在本文中,我们假设一种控制多边形细分层次以降低渲染计算成本的方法,提出了一种使用支持向量机(SVM)根据相邻细节层次之间的可感知性差异从两个细分层次中选择一个细分层次的方法。SVM以绘制过程中得到的四个特征作为输入,进行二值分类,判断多边形是否需要分割。实验结果表明,训练后的支持向量机进行二值分类的准确率为72%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信