Genre-Ation: A Music Genre Identification Application

Milind Bhattacharya, Sravanthi Garikipati, Meena Valisekka, Michalis Papakostas
{"title":"Genre-Ation: A Music Genre Identification Application","authors":"Milind Bhattacharya, Sravanthi Garikipati, Meena Valisekka, Michalis Papakostas","doi":"10.1145/2910674.2935862","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel and faster approach to identify songs by genre. Our application, Genre-Ation, converts the audio signals to spectrograms and waveforms and uses thresholding for feature extraction. In addition, we propose a user-friendly web interface for this application and we evaluate it through a usability testing. Experiments suggested that Genre-Ation outperforms the existing music applications in terms of creating accurate genre based playlist due to the fact that our application is attuned with songs without metadata.","PeriodicalId":359504,"journal":{"name":"Proceedings of the 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2910674.2935862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present a novel and faster approach to identify songs by genre. Our application, Genre-Ation, converts the audio signals to spectrograms and waveforms and uses thresholding for feature extraction. In addition, we propose a user-friendly web interface for this application and we evaluate it through a usability testing. Experiments suggested that Genre-Ation outperforms the existing music applications in terms of creating accurate genre based playlist due to the fact that our application is attuned with songs without metadata.
世代:一种音乐体裁识别应用
在本文中,我们提出了一种新颖而快速的方法来识别歌曲的类型。我们的应用程序generation - ation将音频信号转换为频谱图和波形,并使用阈值法进行特征提取。此外,我们为这个应用程序提出了一个用户友好的web界面,我们通过可用性测试来评估它。实验表明,在创建准确的基于类型的播放列表方面,generation - ation优于现有的音乐应用程序,因为我们的应用程序与没有元数据的歌曲进行了协调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信