Vowel recognition in Romanian language

O. Grigore, I. Gavat, M. Zirra
{"title":"Vowel recognition in Romanian language","authors":"O. Grigore, I. Gavat, M. Zirra","doi":"10.1109/SMICND.1997.651330","DOIUrl":null,"url":null,"abstract":"In this paper are presented results obtained in a vowel recognition task applying unsupervised and supervised fuzzy algorithms and neural networks. The vowels, uttered from 10 speakers each in 250 different contexts are recognized using as features the first three formant frequencies. After an introduction, the feature extraction is presented and then the two fuzzy algorithms (fuzzy ISODATA, fuzzy k-NN) and the two neural nets (nonlinear perceptron, Kohonen map) used for recognition are given.","PeriodicalId":144314,"journal":{"name":"1997 International Semiconductor Conference 20th Edition. CAS '97 Proceedings","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 International Semiconductor Conference 20th Edition. CAS '97 Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMICND.1997.651330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper are presented results obtained in a vowel recognition task applying unsupervised and supervised fuzzy algorithms and neural networks. The vowels, uttered from 10 speakers each in 250 different contexts are recognized using as features the first three formant frequencies. After an introduction, the feature extraction is presented and then the two fuzzy algorithms (fuzzy ISODATA, fuzzy k-NN) and the two neural nets (nonlinear perceptron, Kohonen map) used for recognition are given.
罗马尼亚语的元音识别
本文介绍了用无监督模糊算法和有监督模糊算法以及神经网络在元音识别任务中所获得的结果。这些元音分别由10位说话者在250种不同的语境中发出,他们使用前三个形成峰频率作为特征来识别。在介绍特征提取之后,给出了用于识别的两种模糊算法(模糊ISODATA、模糊k-NN)和两种神经网络(非线性感知器、Kohonen map)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信