Memory Address Scrambling Revealed Using Fault Attacks

J. Fournier, Philippe Loubet-Moundi
{"title":"Memory Address Scrambling Revealed Using Fault Attacks","authors":"J. Fournier, Philippe Loubet-Moundi","doi":"10.1109/FDTC.2010.13","DOIUrl":null,"url":null,"abstract":"Today’s trend in the smart card industry is to move from ROM+EEPROM chips to Flash-only products. Recent publications have illustrated the vulnerability of Floating Gate memories to UV and heat radiation. In this paper, we explain how, by using low cost means, such a vulnerability can be used to modify specific data within an EEPROM memory even in the presence of a given type of counter-measure. Using simple means, we devise a fault injection tool that consistently causes predictable modifications of the targeted memories’ contents by flipping ‘1’s to ‘0’s. By mastering the location of those modifications, we illustrate how we can reverse-engineer a simple address scrambling mechanism in a white box analysis of a given EEPROM. Such an approach can be used to test the security of Floating Gate memories used in security devices like smart cards. We also explain how to prevent such attacks and we propose some counter-measures that can be either implemented on the hardware level by chip designers or on the software level in the Operating System interacting with those memories.","PeriodicalId":127275,"journal":{"name":"2010 Workshop on Fault Diagnosis and Tolerance in Cryptography","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Workshop on Fault Diagnosis and Tolerance in Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FDTC.2010.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Today’s trend in the smart card industry is to move from ROM+EEPROM chips to Flash-only products. Recent publications have illustrated the vulnerability of Floating Gate memories to UV and heat radiation. In this paper, we explain how, by using low cost means, such a vulnerability can be used to modify specific data within an EEPROM memory even in the presence of a given type of counter-measure. Using simple means, we devise a fault injection tool that consistently causes predictable modifications of the targeted memories’ contents by flipping ‘1’s to ‘0’s. By mastering the location of those modifications, we illustrate how we can reverse-engineer a simple address scrambling mechanism in a white box analysis of a given EEPROM. Such an approach can be used to test the security of Floating Gate memories used in security devices like smart cards. We also explain how to prevent such attacks and we propose some counter-measures that can be either implemented on the hardware level by chip designers or on the software level in the Operating System interacting with those memories.
通过故障攻击发现内存地址置乱
当今智能卡行业的趋势是从ROM+EEPROM芯片转向纯闪存产品。最近的出版物已经说明了浮栅存储器对紫外线和热辐射的脆弱性。在本文中,我们解释了如何通过使用低成本的手段,这样的漏洞可以用来修改EEPROM内存中的特定数据,即使存在给定类型的对抗措施。使用简单的方法,我们设计了一个故障注入工具,通过将“1”翻转为“0”,始终如一地导致目标存储器内容的可预测修改。通过掌握这些修改的位置,我们说明了如何在给定EEPROM的白盒分析中反向工程一个简单的地址置乱机制。这种方法可用于测试用于智能卡等安全设备的浮动门存储器的安全性。我们还解释了如何防止此类攻击,并提出了一些应对措施,这些措施可以由芯片设计者在硬件层面实现,也可以在与这些存储器交互的操作系统的软件层面实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信