C. Devlin, J. Vella, D. Walker, J. Lombardi, N. Limberopoulos, J. Derov
{"title":"Nanoscale gradient index media fabrication for extreme control and tunability of optical wave propagation","authors":"C. Devlin, J. Vella, D. Walker, J. Lombardi, N. Limberopoulos, J. Derov","doi":"10.1109/NAECON.2014.7045774","DOIUrl":null,"url":null,"abstract":"Gradient Index Media have multiple applications for controlling the wave propagation and harvesting its received energy or processing its embedded data. A nanofabrication process was developed to produce a Luneburg lens on silicon, to operate in the optical regime, with feature sizes smaller than 100nm. The focused energy of the Luneburg lens is compared with lenses of non-spatially-varying index as well as a linear spatial variation, and its enhanced focusing is clearly demonstrated. In addition, a mechanism of thermal tunability of such devices is proposed and is supported by our results.","PeriodicalId":318539,"journal":{"name":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2014.7045774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Gradient Index Media have multiple applications for controlling the wave propagation and harvesting its received energy or processing its embedded data. A nanofabrication process was developed to produce a Luneburg lens on silicon, to operate in the optical regime, with feature sizes smaller than 100nm. The focused energy of the Luneburg lens is compared with lenses of non-spatially-varying index as well as a linear spatial variation, and its enhanced focusing is clearly demonstrated. In addition, a mechanism of thermal tunability of such devices is proposed and is supported by our results.