Mesbah Uddin, M. Majumder, G. Rose, K. Beckmann, H. Manem, Z. Alamgir, N. Cady
{"title":"Techniques for Improved Reliability in Memristive Crossbar PUF Circuits","authors":"Mesbah Uddin, M. Majumder, G. Rose, K. Beckmann, H. Manem, Z. Alamgir, N. Cady","doi":"10.1109/ISVLSI.2016.33","DOIUrl":null,"url":null,"abstract":"Hardware security has emerged as an important field of study aimed at mitigating issues such as integrated circuit (IC) piracy and counterfeiting. One popular solution for such hardware security attacks are physically unclonable functions (PUF) which provide a hardware specific unique identification based on intrinsic process variations within individual integrated circuit implementations. At the same time, as technology scaling progresses further into the nanometer region, emerging nanoelectronic technologies such as memristors become viable options. Several examples of nanoelectronic memristor-based PUF circuits have been proposed in the last few years. In this paper, we analyze the behavior of crossbar memristive PUF circuits under different environmental conditions such as varying temperature, supply rail voltage fluctuations and aging. We also present an approach that improves the reliability of these circuits, taking environmental variations into consideration. The advantages and challenges associated with these PUFs are also discussed in detail. Specifically, we show results for security metrics including reliability, uniqueness and uniformity. These security performance results are presented alongside estimates for power, area and delay showing the advantages of using nanoelectronic PUFs from the perspective of efficient resource utilization.","PeriodicalId":140647,"journal":{"name":"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2016.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
Hardware security has emerged as an important field of study aimed at mitigating issues such as integrated circuit (IC) piracy and counterfeiting. One popular solution for such hardware security attacks are physically unclonable functions (PUF) which provide a hardware specific unique identification based on intrinsic process variations within individual integrated circuit implementations. At the same time, as technology scaling progresses further into the nanometer region, emerging nanoelectronic technologies such as memristors become viable options. Several examples of nanoelectronic memristor-based PUF circuits have been proposed in the last few years. In this paper, we analyze the behavior of crossbar memristive PUF circuits under different environmental conditions such as varying temperature, supply rail voltage fluctuations and aging. We also present an approach that improves the reliability of these circuits, taking environmental variations into consideration. The advantages and challenges associated with these PUFs are also discussed in detail. Specifically, we show results for security metrics including reliability, uniqueness and uniformity. These security performance results are presented alongside estimates for power, area and delay showing the advantages of using nanoelectronic PUFs from the perspective of efficient resource utilization.