Generating Gauss quadratures for Green's function /sup 1///sub r/: a randomized algorithm

H. H. Pham, A. Nathan
{"title":"Generating Gauss quadratures for Green's function /sup 1///sub r/: a randomized algorithm","authors":"H. H. Pham, A. Nathan","doi":"10.1109/CCECE.1998.685582","DOIUrl":null,"url":null,"abstract":"We report a randomized scheme for generating Gauss quadratures for an exponential integral representation of the Green's function /sup 1///sub r/. These Gauss quadratures form the basis of the exponential-expansion-based method, which has previously been developed for rapid and accurate evaluation of the potential field and its gradient in three dimensions. Given a desired degree of accuracy on the approximation of /sup 1///sub r/, the technique proposed here enables generation of exponential expansion with sizes as small as possible. It makes use of the standard Legendre-Gauss and Chebychev-Gauss quadratures, and does not require solving a large system of non-linear equations.","PeriodicalId":177613,"journal":{"name":"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1998.685582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We report a randomized scheme for generating Gauss quadratures for an exponential integral representation of the Green's function /sup 1///sub r/. These Gauss quadratures form the basis of the exponential-expansion-based method, which has previously been developed for rapid and accurate evaluation of the potential field and its gradient in three dimensions. Given a desired degree of accuracy on the approximation of /sup 1///sub r/, the technique proposed here enables generation of exponential expansion with sizes as small as possible. It makes use of the standard Legendre-Gauss and Chebychev-Gauss quadratures, and does not require solving a large system of non-linear equations.
格林函数的高斯正交生成:一种随机算法
本文报道了格林函数的指数积分表示生成高斯正交的一种随机方案。这些高斯正交构成了基于指数展开的方法的基础,该方法先前已被开发用于在三维空间中快速准确地评估势场及其梯度。给定/sup 1/// /sub r/近似值的期望精度,这里提出的技术可以生成尺寸尽可能小的指数展开。它利用了标准的勒让德-高斯和切比雪夫-高斯正交,并且不需要求解一个大型的非线性方程组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信