The Machine Learning based Optimized Prediction Method for Breast Cancer Detection

Nirdosh Kumar, Gaurav Sharma, Lava Bhargava
{"title":"The Machine Learning based Optimized Prediction Method for Breast Cancer Detection","authors":"Nirdosh Kumar, Gaurav Sharma, Lava Bhargava","doi":"10.1109/ICECA49313.2020.9297479","DOIUrl":null,"url":null,"abstract":"Breast Cancer is the most prevalent form of cancer and significant reason for high mortality rates among women. Manual diagnosis of this disease requires long hours & specialists. Therefore an Automated breast cancer diagnosis has been developed to reduce the time taken for diagnosis and decreases the spread of cancer. This paper presents a comparative study of four machine learning algorithms namely Logistic Regression, SVM, KNN and Naive Bayes by calculating their classification accuracy, sensitivity, specificity and other parameters. The different hyper-parameters used for different ML algorithms were manually assigned. Among all algorithms, SVM performed better with the accuracy of about 98.24%.","PeriodicalId":297285,"journal":{"name":"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA49313.2020.9297479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Breast Cancer is the most prevalent form of cancer and significant reason for high mortality rates among women. Manual diagnosis of this disease requires long hours & specialists. Therefore an Automated breast cancer diagnosis has been developed to reduce the time taken for diagnosis and decreases the spread of cancer. This paper presents a comparative study of four machine learning algorithms namely Logistic Regression, SVM, KNN and Naive Bayes by calculating their classification accuracy, sensitivity, specificity and other parameters. The different hyper-parameters used for different ML algorithms were manually assigned. Among all algorithms, SVM performed better with the accuracy of about 98.24%.
基于机器学习的乳腺癌检测优化预测方法
乳腺癌是最普遍的癌症形式,也是妇女死亡率高的重要原因。人工诊断这种疾病需要很长时间和专家。因此,一种自动化的乳腺癌诊断已经被开发出来,以减少诊断所需的时间并减少癌症的扩散。本文通过对Logistic回归、SVM、KNN和朴素贝叶斯四种机器学习算法的分类精度、灵敏度、特异性等参数的计算,对它们进行了比较研究。不同ML算法使用的不同超参数是手动分配的。在所有算法中,SVM表现较好,准确率约为98.24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信