{"title":"The Machine Learning based Optimized Prediction Method for Breast Cancer Detection","authors":"Nirdosh Kumar, Gaurav Sharma, Lava Bhargava","doi":"10.1109/ICECA49313.2020.9297479","DOIUrl":null,"url":null,"abstract":"Breast Cancer is the most prevalent form of cancer and significant reason for high mortality rates among women. Manual diagnosis of this disease requires long hours & specialists. Therefore an Automated breast cancer diagnosis has been developed to reduce the time taken for diagnosis and decreases the spread of cancer. This paper presents a comparative study of four machine learning algorithms namely Logistic Regression, SVM, KNN and Naive Bayes by calculating their classification accuracy, sensitivity, specificity and other parameters. The different hyper-parameters used for different ML algorithms were manually assigned. Among all algorithms, SVM performed better with the accuracy of about 98.24%.","PeriodicalId":297285,"journal":{"name":"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA49313.2020.9297479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Breast Cancer is the most prevalent form of cancer and significant reason for high mortality rates among women. Manual diagnosis of this disease requires long hours & specialists. Therefore an Automated breast cancer diagnosis has been developed to reduce the time taken for diagnosis and decreases the spread of cancer. This paper presents a comparative study of four machine learning algorithms namely Logistic Regression, SVM, KNN and Naive Bayes by calculating their classification accuracy, sensitivity, specificity and other parameters. The different hyper-parameters used for different ML algorithms were manually assigned. Among all algorithms, SVM performed better with the accuracy of about 98.24%.