Data Lake Architecture for Air Traffic Management

R. Raju, R. Mital, Daniel M. Finkelsztein
{"title":"Data Lake Architecture for Air Traffic Management","authors":"R. Raju, R. Mital, Daniel M. Finkelsztein","doi":"10.1109/dasc.2018.8569361","DOIUrl":null,"url":null,"abstract":"The air traffic transformation underway in the US with the FAA NextGen and in Europe with SESAR relies on information sharing and system interoperability to increase efficiencies, safety and capacity. The proliferation and dissemination of flight, weather, aeronautical, and environmental data by all air traffic participants represents a treasure trove of air traffic optimization opportunities awaiting to be exploited. Traditional data exploitation methods and tools tend to rely on structured data stores and analytical capability architected to answer defined and current questions. SGT, in collaboration with the US DOT Volpe National Transportation Systems Center, developed a prototype air transportation cloud based Data Lake to harness big data from a variety of sources and build the current and next generation of analytics capability. The Data Lake prototype ingests data from multiple sources including FAA sources like SFDPS, TFMData, TBFM, STDDS, ITWS, and AEDT data sources, and stores it in raw, processed, and refined format. The prototype offers an illustration for how users can realize powerful air traffic related data analysis using structured, unstructured and semi-structured data using open source tools to execute queries, searches, processing streams and to visualize data. Using a combination of traditional SQL and NOSQL, Open-Source and COTS products - PostgreSQL, Elastic-Logstash-Kibana, Apache Kafka, Apache Spark and visualization tools like Tableau, D3 and others, the project shows how analysts can quickly and easily build powerful data pipelines and statistical models.","PeriodicalId":405724,"journal":{"name":"2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/dasc.2018.8569361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The air traffic transformation underway in the US with the FAA NextGen and in Europe with SESAR relies on information sharing and system interoperability to increase efficiencies, safety and capacity. The proliferation and dissemination of flight, weather, aeronautical, and environmental data by all air traffic participants represents a treasure trove of air traffic optimization opportunities awaiting to be exploited. Traditional data exploitation methods and tools tend to rely on structured data stores and analytical capability architected to answer defined and current questions. SGT, in collaboration with the US DOT Volpe National Transportation Systems Center, developed a prototype air transportation cloud based Data Lake to harness big data from a variety of sources and build the current and next generation of analytics capability. The Data Lake prototype ingests data from multiple sources including FAA sources like SFDPS, TFMData, TBFM, STDDS, ITWS, and AEDT data sources, and stores it in raw, processed, and refined format. The prototype offers an illustration for how users can realize powerful air traffic related data analysis using structured, unstructured and semi-structured data using open source tools to execute queries, searches, processing streams and to visualize data. Using a combination of traditional SQL and NOSQL, Open-Source and COTS products - PostgreSQL, Elastic-Logstash-Kibana, Apache Kafka, Apache Spark and visualization tools like Tableau, D3 and others, the project shows how analysts can quickly and easily build powerful data pipelines and statistical models.
空中交通管理的数据湖架构
美国的FAA NextGen和欧洲的SESAR正在进行的空中交通转型依赖于信息共享和系统互操作性,以提高效率、安全性和容量。所有空中交通参与者的飞行、天气、航空和环境数据的扩散和传播代表着等待开发的空中交通优化机会的宝库。传统的数据开发方法和工具倾向于依赖结构化的数据存储和分析能力来回答已定义的和当前的问题。SGT与美国交通部Volpe国家交通系统中心合作,开发了一个基于云的航空运输数据湖原型,以利用来自各种来源的大数据,并建立当前和下一代的分析能力。数据湖原型从多个数据源(包括FAA数据源,如SFDPS、TFMData、TBFM、STDDS、ITWS和AEDT数据源)摄取数据,并以原始、处理和精炼的格式存储数据。该原型展示了用户如何利用结构化、非结构化和半结构化数据,利用开源工具执行查询、搜索、处理流和可视化数据,实现强大的空中交通相关数据分析。该项目结合了传统SQL和NOSQL、开源和COTS产品——PostgreSQL、Elastic-Logstash-Kibana、Apache Kafka、Apache Spark以及Tableau、D3等可视化工具,展示了分析师如何快速、轻松地构建强大的数据管道和统计模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信