{"title":"Energetic Forms of Matter","authors":"Aletheia Ida","doi":"10.4018/978-1-5225-6995-4.CH007","DOIUrl":null,"url":null,"abstract":"One of the challenges that architects and designers are confronted with in contemporary contexts is the need to address an ethical responsibility towards the health of the environment through understanding the energetic processes embedded in materials and their compositions. A scientific explanation of material fundamentals, including chemistry, physical structure, and embodied energy, provides the greatest insight to material property performance values and relative environmental impacts. This information aids architects in making informed decisions about building materials in the design process. This chapter addresses the book topic of reusable and sustainable building materials through the position that all matter is a form of energy, just as living systems are the transmutation of matter and energy. The seven major material groups, which include natural materials, non-technical ceramics, technical ceramics, metals, polymers, foams and elastomers, and composites, are presented with examples and applications discussed.","PeriodicalId":256815,"journal":{"name":"Reusable and Sustainable Building Materials in Modern Architecture","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reusable and Sustainable Building Materials in Modern Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-6995-4.CH007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
One of the challenges that architects and designers are confronted with in contemporary contexts is the need to address an ethical responsibility towards the health of the environment through understanding the energetic processes embedded in materials and their compositions. A scientific explanation of material fundamentals, including chemistry, physical structure, and embodied energy, provides the greatest insight to material property performance values and relative environmental impacts. This information aids architects in making informed decisions about building materials in the design process. This chapter addresses the book topic of reusable and sustainable building materials through the position that all matter is a form of energy, just as living systems are the transmutation of matter and energy. The seven major material groups, which include natural materials, non-technical ceramics, technical ceramics, metals, polymers, foams and elastomers, and composites, are presented with examples and applications discussed.