Predicting Stroke Disease Based on Recurrent Neural Network and Optimization techniques

Hager Saleh, A. M. Hussien, M. Hassan, Abdelmgeid A. Ali
{"title":"Predicting Stroke Disease Based on Recurrent Neural Network and Optimization techniques","authors":"Hager Saleh, A. M. Hussien, M. Hassan, Abdelmgeid A. Ali","doi":"10.1109/ICEMIS56295.2022.9914334","DOIUrl":null,"url":null,"abstract":"Stroke disease is one of the most prevalent diseases all over the world. This paper presents a powerful early stroke prediction system that uses medical records that describe whether a person is infected or not. We proposed an optimized DeepRNN based on different layers of A Recurrent Neural Network (RNN) and KerasTuner optimization technique for predication stroke disease. The proposed model is compared with other ML models: Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), K Nearest Neighbors (K-NN), and Naive Bayes (NB). The GridsearchCV technique optimized ML models. The results showed that DeepRNN was the highest performance model compared with ML models.","PeriodicalId":191284,"journal":{"name":"2022 International Conference on Engineering & MIS (ICEMIS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Engineering & MIS (ICEMIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMIS56295.2022.9914334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stroke disease is one of the most prevalent diseases all over the world. This paper presents a powerful early stroke prediction system that uses medical records that describe whether a person is infected or not. We proposed an optimized DeepRNN based on different layers of A Recurrent Neural Network (RNN) and KerasTuner optimization technique for predication stroke disease. The proposed model is compared with other ML models: Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), K Nearest Neighbors (K-NN), and Naive Bayes (NB). The GridsearchCV technique optimized ML models. The results showed that DeepRNN was the highest performance model compared with ML models.
基于递归神经网络和优化技术的脑卒中疾病预测
中风是世界上最常见的疾病之一。本文提出了一个强大的早期中风预测系统,该系统使用医疗记录来描述一个人是否被感染。提出了一种基于递归神经网络(RNN)不同层数和KerasTuner优化技术的深度神经网络预测脑卒中疾病。该模型与其他ML模型进行了比较:决策树(DT)、逻辑回归(LR)、随机森林(RF)、支持向量机(SVM)、K近邻(K- nn)和朴素贝叶斯(NB)。GridsearchCV技术优化了ML模型。结果表明,与ML模型相比,DeepRNN是性能最高的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信