AxC-CS: Approximate Computing for Hardware Efficient Compressed Sensing Encoder Design

Wenfeng Zhao, Biao Sun, Jian Chen, Yajun Ha
{"title":"AxC-CS: Approximate Computing for Hardware Efficient Compressed Sensing Encoder Design","authors":"Wenfeng Zhao, Biao Sun, Jian Chen, Yajun Ha","doi":"10.1109/SOCC46988.2019.1570558477","DOIUrl":null,"url":null,"abstract":"In this paper, we present an approximate computing framework for hardware-efficeint compressed sensing encoder design exploiting application-level error-resiliency, termed as AxC-CS (\\underline {A}ppro\\underline {x}imate \\underline {C}omputing for \\underline {C}ompressed \\underline {S}ensing). We consider a 2-stage scalar quantization scheme during CS encoding process for physiological signals in sensor nodes and demonstrate numerically that bringing forward the quantization process to the input signals could lead to negligible difference in signal reconstruction as compared to the standard measurement quantization scheme, and a second stage quantization over the approximate measurement can be performed to restore the ratedistortion performance. The optimal quantization depth can be deterministic according to the adopted sensing matrices. For random binary sensing matrix adopted in this paper, [${\\mathbf{log}}_{\\mathbf{2}} (\\mathbf{n}/2)/2$] bits quantization depth can be safely truncated without incuring noticable errors when $\\ell_{1} -$minimization is used for signal recovery. Compared with standard CS with accurate operation, this leads to efficient CS encoder design with simultaneous area and power reduction, where 25% and 28% lower area and power consumption can be achieved on MIT-BIH Arrhythmia database, respectively.","PeriodicalId":253998,"journal":{"name":"2019 32nd IEEE International System-on-Chip Conference (SOCC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 32nd IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC46988.2019.1570558477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present an approximate computing framework for hardware-efficeint compressed sensing encoder design exploiting application-level error-resiliency, termed as AxC-CS (\underline {A}ppro\underline {x}imate \underline {C}omputing for \underline {C}ompressed \underline {S}ensing). We consider a 2-stage scalar quantization scheme during CS encoding process for physiological signals in sensor nodes and demonstrate numerically that bringing forward the quantization process to the input signals could lead to negligible difference in signal reconstruction as compared to the standard measurement quantization scheme, and a second stage quantization over the approximate measurement can be performed to restore the ratedistortion performance. The optimal quantization depth can be deterministic according to the adopted sensing matrices. For random binary sensing matrix adopted in this paper, [${\mathbf{log}}_{\mathbf{2}} (\mathbf{n}/2)/2$] bits quantization depth can be safely truncated without incuring noticable errors when $\ell_{1} -$minimization is used for signal recovery. Compared with standard CS with accurate operation, this leads to efficient CS encoder design with simultaneous area and power reduction, where 25% and 28% lower area and power consumption can be achieved on MIT-BIH Arrhythmia database, respectively.
AxC-CS:硬件高效压缩感知编码器设计的近似计算
在本文中,我们提出了一个利用应用级错误弹性的硬件高效压缩感知编码器设计的近似计算框架,称为AxC-CS (\underline {A}ppro\underline {x}imate \underline {C}计算用于\underline {C}压缩\underline {S} ense)。我们在传感器节点生理信号的CS编码过程中考虑了一种两级标量量化方案,并通过数值证明,与标准测量量化方案相比,对输入信号进行量化处理可以导致信号重构的差异可以忽略不计,并且可以在近似测量上进行第二阶段量化以恢复率失真性能。根据所采用的传感矩阵,可以确定最佳量化深度。对于本文所采用的随机二值感知矩阵,当使用$\ell_{1} -$minimization进行信号恢复时,[${\mathbf{log}}_{\mathbf{2}} (\mathbf{n}/2)/2$]位量化深度可以被安全截断而不会产生明显的错误。与精确操作的标准CS相比,这导致了高效的CS编码器设计,同时减少了面积和功耗,其中在MIT-BIH心律失常数据库上的面积和功耗分别降低了25%和28%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信