Parameter identification of a wind generator unit RMS model using sparse grid optimization algorithm

Qing Fang, R. Zivanovic
{"title":"Parameter identification of a wind generator unit RMS model using sparse grid optimization algorithm","authors":"Qing Fang, R. Zivanovic","doi":"10.1109/ICMIC.2014.7020766","DOIUrl":null,"url":null,"abstract":"This paper presents a global sparse grid optimization algorithm applied in parameter identification of a wind generation Root Mean Square (RMS) phasor model. The details of vendor specific RMS models used in dynamic simulation software (e.g. PSSE) are not provided by manufacturers. Therefore, there is a need to develop a procedure which can convert vendor specific models to standardized generic models (e.g. International Electrotechnical Commission model, IEC model). The procedure we propose, identifies the parameters of the IEC generic model using dynamic response of a given vendor specific model as input. The IEC model parameters can be found and dynamic response of the vendor model can be approximated with sufficient accuracy. In the simulation example we show that the parameter identification based on the global sparse grid optimization algorithm is effective in converting a vendor specific model to a standardized generic model.","PeriodicalId":405363,"journal":{"name":"Proceedings of 2014 International Conference on Modelling, Identification & Control","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2014 International Conference on Modelling, Identification & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIC.2014.7020766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a global sparse grid optimization algorithm applied in parameter identification of a wind generation Root Mean Square (RMS) phasor model. The details of vendor specific RMS models used in dynamic simulation software (e.g. PSSE) are not provided by manufacturers. Therefore, there is a need to develop a procedure which can convert vendor specific models to standardized generic models (e.g. International Electrotechnical Commission model, IEC model). The procedure we propose, identifies the parameters of the IEC generic model using dynamic response of a given vendor specific model as input. The IEC model parameters can be found and dynamic response of the vendor model can be approximated with sufficient accuracy. In the simulation example we show that the parameter identification based on the global sparse grid optimization algorithm is effective in converting a vendor specific model to a standardized generic model.
基于稀疏网格优化算法的风力发电机组RMS模型参数辨识
本文提出了一种用于风力发电均方根相量模型参数辨识的全局稀疏网格优化算法。动态仿真软件(例如PSSE)中使用的供应商特定RMS模型的详细信息未由制造商提供。因此,有必要制定一种程序,将供应商特定的模型转换为标准化的通用模型(例如国际电工委员会模型,IEC模型)。我们提出的程序,使用给定供应商特定模型的动态响应作为输入,确定IEC通用模型的参数。该方法可以找到IEC模型参数,并能以足够的精度逼近供应商模型的动态响应。仿真实例表明,基于全局稀疏网格优化算法的参数识别能够有效地将厂商特定模型转化为标准化的通用模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信