A Computed Aided Diagnosis tool for Alzheimer's disease based on 11C-PiB PET imaging technique

Jiehui Jiang, X. Shu, Xin Liu, Zhemin Huang
{"title":"A Computed Aided Diagnosis tool for Alzheimer's disease based on 11C-PiB PET imaging technique","authors":"Jiehui Jiang, X. Shu, Xin Liu, Zhemin Huang","doi":"10.1109/ICINFA.2015.7279610","DOIUrl":null,"url":null,"abstract":"Pittsburgh compound B Positron Emission Tomography (PiB PET) imaging is a new technique to detect amyloid-beta (Aβ). Aβ is a pathological bio-data which appears distinctly in most neuro-degeneration diseases, such as Alzheimer's disease (AD). Although PiB PET imaging is relative mature, the accurate diagnosis of AD based on PiB PET images still remains a challenge for radiologists. To solve above problem, this paper proposes a Computed Aided Diagnosis (CAD) tool, which combines three machine learning kernels: Principal Component Analysis (PCA), Independent Component analysis (ICA) and Support Vector Machine (SVM). The experimental results with 120 groups of PiB PET images showed that the proposed CAD tool can yield a high accuracy in AD diagnosis.","PeriodicalId":186975,"journal":{"name":"2015 IEEE International Conference on Information and Automation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Information and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2015.7279610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Pittsburgh compound B Positron Emission Tomography (PiB PET) imaging is a new technique to detect amyloid-beta (Aβ). Aβ is a pathological bio-data which appears distinctly in most neuro-degeneration diseases, such as Alzheimer's disease (AD). Although PiB PET imaging is relative mature, the accurate diagnosis of AD based on PiB PET images still remains a challenge for radiologists. To solve above problem, this paper proposes a Computed Aided Diagnosis (CAD) tool, which combines three machine learning kernels: Principal Component Analysis (PCA), Independent Component analysis (ICA) and Support Vector Machine (SVM). The experimental results with 120 groups of PiB PET images showed that the proposed CAD tool can yield a high accuracy in AD diagnosis.
基于11C-PiB PET成像技术的阿尔茨海默病计算机辅助诊断工具
匹兹堡化合物B正电子发射断层成像(PiB PET)是一种检测β淀粉样蛋白(a β)的新技术。a β是大多数神经退行性疾病(如阿尔茨海默病(AD))中明显出现的病理生物数据。虽然PiB PET成像相对成熟,但基于PiB PET图像的AD准确诊断仍然是放射科医师面临的挑战。为了解决上述问题,本文提出了一种计算机辅助诊断(CAD)工具,该工具结合了三种机器学习内核:主成分分析(PCA)、独立成分分析(ICA)和支持向量机(SVM)。120组PiB PET图像的实验结果表明,所提出的CAD工具对AD的诊断具有较高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信