A General-Purpose Compute-in-Memory Processor Combining CPU and Deep Learning with Elevated CPU Efficiency and Enhanced Data Locality

Yuhao Ju, Yijie Wei, X. Chen, Jie Gu
{"title":"A General-Purpose Compute-in-Memory Processor Combining CPU and Deep Learning with Elevated CPU Efficiency and Enhanced Data Locality","authors":"Yuhao Ju, Yijie Wei, X. Chen, Jie Gu","doi":"10.23919/VLSITechnologyandCir57934.2023.10185311","DOIUrl":null,"url":null,"abstract":"This work presents a general-purpose compute-in-memory (GPCIM) processor combining DNN operations and vector CPU. Utilizing special reconfigurability, dataflow, and instruction set, the 65nm test chip demonstrates a 28.5 TOPS/W DNN macro efficiency and a best-in-class peak CPU efficiency of 802GOPS/W. Due to a data locality flow, 37% to 55% end-to-end latency improvement on AI-related applications is achieved by eliminating inter-core data transfer.","PeriodicalId":317958,"journal":{"name":"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a general-purpose compute-in-memory (GPCIM) processor combining DNN operations and vector CPU. Utilizing special reconfigurability, dataflow, and instruction set, the 65nm test chip demonstrates a 28.5 TOPS/W DNN macro efficiency and a best-in-class peak CPU efficiency of 802GOPS/W. Due to a data locality flow, 37% to 55% end-to-end latency improvement on AI-related applications is achieved by eliminating inter-core data transfer.
一种结合CPU和深度学习的通用内存计算处理器,提高CPU效率和增强数据局域性
本研究提出了一种结合DNN运算和向量CPU的通用内存计算(GPCIM)处理器。利用特殊的可重构性、数据流和指令集,65nm测试芯片具有28.5 TOPS/W的DNN宏效率和同类最佳的802GOPS/W峰值CPU效率。由于数据局域性流,通过消除核间数据传输,人工智能相关应用程序的端到端延迟改善了37%至55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信