Methods and Performances Study for Power Spectrum Density Modeling of Non-gaussian Processes

Wang Pingbo, Wang Shuzong, Liu Feng, C. Zhiming
{"title":"Methods and Performances Study for Power Spectrum Density Modeling of Non-gaussian Processes","authors":"Wang Pingbo, Wang Shuzong, Liu Feng, C. Zhiming","doi":"10.1109/CMSP.2011.140","DOIUrl":null,"url":null,"abstract":"As used in Gaussian case, the autoregressive model can be applied to fit the power spectrum density of non-Gaussian processes. However, the least square estimation, the most popular method under Gaussian hypothesis, is no more efficient here. Firstly, under the non-Gaussian hypothesis of Gaussian mixture, the Crammer-Rao bounds of parameter estimation for the power spectrum density autoregressive model are analyzed. Secondly, the efficient estimation, i.e. the maximum likelihood estimation, is deduced. Thirdly, its simplification, the weighted least square estimation is set up. Finally, a numerical instance is given to illustrate the performance discrimination among the maximum likelihood estimation, the weighted least square estimation and the conventional unweighted least square estimation.","PeriodicalId":309902,"journal":{"name":"2011 International Conference on Multimedia and Signal Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Multimedia and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMSP.2011.140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As used in Gaussian case, the autoregressive model can be applied to fit the power spectrum density of non-Gaussian processes. However, the least square estimation, the most popular method under Gaussian hypothesis, is no more efficient here. Firstly, under the non-Gaussian hypothesis of Gaussian mixture, the Crammer-Rao bounds of parameter estimation for the power spectrum density autoregressive model are analyzed. Secondly, the efficient estimation, i.e. the maximum likelihood estimation, is deduced. Thirdly, its simplification, the weighted least square estimation is set up. Finally, a numerical instance is given to illustrate the performance discrimination among the maximum likelihood estimation, the weighted least square estimation and the conventional unweighted least square estimation.
非高斯过程功率谱密度建模方法及性能研究
与高斯情况一样,该自回归模型可用于拟合非高斯过程的功率谱密度。然而,在高斯假设下最常用的最小二乘估计在这里并不有效。首先,在高斯混合的非高斯假设下,分析了功率谱密度自回归模型参数估计的Crammer-Rao界;其次,推导了有效估计,即最大似然估计。第三,对其进行简化,建立加权最小二乘估计。最后给出了一个算例,说明了极大似然估计、加权最小二乘估计和常规非加权最小二乘估计的性能区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信