T. Ohki, T. Kikkawa, Y. Inoue, M. Kanamura, N. Okamoto, K. Makiyama, K. Imanishi, H. Shigematsu, K. Joshin, N. Hara
{"title":"Reliability of GaN HEMTs: current status and future technology","authors":"T. Ohki, T. Kikkawa, Y. Inoue, M. Kanamura, N. Okamoto, K. Makiyama, K. Imanishi, H. Shigematsu, K. Joshin, N. Hara","doi":"10.1109/IRPS.2009.5173225","DOIUrl":null,"url":null,"abstract":"In this paper, we describe highly reliable GaN high electron mobility transistors (HEMTs) for high-power and high-efficiency amplifiers. First, we present the reliability mechanisms and progress on the previously reported GaN HEMTs. Next, we introduce our specific device structure for GaN HEMTs for improving reliability. An n-GaN cap and optimized buffer layer are used to realize high efficiency and high reliability by suppressing current collapse and quiescent current (Idsq)-drift. Finally, we propose a new device process around the gate electrode for further improvement of reliability. Preventing gate edge silicidation leads to reduced gate leakage current and suppression of initial degradation in a DC-stress test under high-temperature and high-voltage conditions. Gate edge engineering plays a key role in reducing the gate leakage current and improving reliability.","PeriodicalId":345860,"journal":{"name":"2009 IEEE International Reliability Physics Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Reliability Physics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2009.5173225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
In this paper, we describe highly reliable GaN high electron mobility transistors (HEMTs) for high-power and high-efficiency amplifiers. First, we present the reliability mechanisms and progress on the previously reported GaN HEMTs. Next, we introduce our specific device structure for GaN HEMTs for improving reliability. An n-GaN cap and optimized buffer layer are used to realize high efficiency and high reliability by suppressing current collapse and quiescent current (Idsq)-drift. Finally, we propose a new device process around the gate electrode for further improvement of reliability. Preventing gate edge silicidation leads to reduced gate leakage current and suppression of initial degradation in a DC-stress test under high-temperature and high-voltage conditions. Gate edge engineering plays a key role in reducing the gate leakage current and improving reliability.