An evaluation of a number of techniques for decreasing the computational complexity of texture feature extraction through an application to ultrasonic image analysis

A.E. Svolos, A. Pokropek
{"title":"An evaluation of a number of techniques for decreasing the computational complexity of texture feature extraction through an application to ultrasonic image analysis","authors":"A.E. Svolos, A. Pokropek","doi":"10.1109/IEMBS.1997.757682","DOIUrl":null,"url":null,"abstract":"Texture feature extraction has been proved to be a fundamental process in medical image analysis. Therefore, the reduction of its computational time and storage requirements should be an aim of continuous research. This paper investigates a number of techniques in the direction of the above goal. They are all based on the space efficient co-occurrence trees in the spatial grey level dependence method (SGLDM). The techniques are applied to a number of ultrasonic images, giving lower bound results on their time performance. A comparison with the co-occurrence matrix approach is performed. Finally, their usefulness in a real clinical application is discussed.","PeriodicalId":342750,"journal":{"name":"Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1997.757682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Texture feature extraction has been proved to be a fundamental process in medical image analysis. Therefore, the reduction of its computational time and storage requirements should be an aim of continuous research. This paper investigates a number of techniques in the direction of the above goal. They are all based on the space efficient co-occurrence trees in the spatial grey level dependence method (SGLDM). The techniques are applied to a number of ultrasonic images, giving lower bound results on their time performance. A comparison with the co-occurrence matrix approach is performed. Finally, their usefulness in a real clinical application is discussed.
通过在超声图像分析中的应用,对降低纹理特征提取计算复杂度的几种技术进行了评价
纹理特征提取是医学图像分析的一个基本步骤。因此,减少其计算时间和存储需求应该是一个持续研究的目标。本文在上述目标的方向上研究了一些技术。它们都是基于空间灰度依赖法(SGLDM)中的空间高效共生树。该技术应用于许多超声图像,给出了其时间性能的下界结果。并与共现矩阵法进行了比较。最后,讨论了它们在实际临床应用中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信