Robust surface reconstruction from defective point clouds by using orientation inference and volumetric regularization

Yi-Ling Chen, S. Lai, T. Nishita
{"title":"Robust surface reconstruction from defective point clouds by using orientation inference and volumetric regularization","authors":"Yi-Ling Chen, S. Lai, T. Nishita","doi":"10.1145/1667146.1667164","DOIUrl":null,"url":null,"abstract":"Surface reconstruction is a critical stage in the 3D data acquisition and model creation system. Most existing reconstruction algorithms are designed for oriented data, i.e. point sets with surface normals. However, in some applications, explicit orientation information may not be available, e.g. Shape from Contour (SfC). Besides, the point sets recovered from images and camera calibration are typically noisy and contains defects, e.g. holes or non-uniform sampling. We present a robust method that achieves smooth surface approximation from unoriented and defective point sets by orientation inference and volumetric regularization.","PeriodicalId":180587,"journal":{"name":"ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1667146.1667164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Surface reconstruction is a critical stage in the 3D data acquisition and model creation system. Most existing reconstruction algorithms are designed for oriented data, i.e. point sets with surface normals. However, in some applications, explicit orientation information may not be available, e.g. Shape from Contour (SfC). Besides, the point sets recovered from images and camera calibration are typically noisy and contains defects, e.g. holes or non-uniform sampling. We present a robust method that achieves smooth surface approximation from unoriented and defective point sets by orientation inference and volumetric regularization.
基于方向推断和体积正则化的缺陷点云鲁棒表面重建
曲面重建是三维数据采集和模型创建系统的关键环节。大多数现有的重建算法都是针对定向数据设计的,即具有表面法线的点集。然而,在某些应用中,明确的方向信息可能不可用,例如轮廓形状(SfC)。此外,从图像和相机校准中恢复的点集通常是有噪声的,并且包含缺陷,例如孔或不均匀采样。提出了一种利用方向推理和体积正则化方法从无方向和缺陷点集逼近光滑表面的鲁棒方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信