Embedding Q-Learning in the selection of metaheuristic operators: The enhanced binary grey wolf optimizer case

Diego Tapia, Broderick Crawford, Ricardo Soto, W. Palma, José Lemus-Romani, Felipe Cisternas-Caneo, Mauricio Castillo, Marcelo Becerra-Rozas, F. Paredes, S. Misra
{"title":"Embedding Q-Learning in the selection of metaheuristic operators: The enhanced binary grey wolf optimizer case","authors":"Diego Tapia, Broderick Crawford, Ricardo Soto, W. Palma, José Lemus-Romani, Felipe Cisternas-Caneo, Mauricio Castillo, Marcelo Becerra-Rozas, F. Paredes, S. Misra","doi":"10.1109/ICAACCA51523.2021.9465259","DOIUrl":null,"url":null,"abstract":"In the different situations present in the industry, combinatorial problems are increasingly frequent. This paper presents the interaction of Metaheuristics and Machine Learning, specifically as Machine Learning can be a support to enhance Metaheuristics. The resolution of the Set Covering Problem is presented, using the Grey Wolf Optimizer and Sine Cosine Algorithm metaheuristics that have been improved by adding a Q-Learning technique for the selection of a Discretization Scheme, using two-steps, intelligently choosing which transfer function to use and which binarization technique to apply in each iteration. The results show a better result for the Grey Wolf Optimizer with Q-Learning configuration, compared to other configurations in the literature, obtaining a better balance between exploration and exploitation.","PeriodicalId":328922,"journal":{"name":"2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAACCA51523.2021.9465259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In the different situations present in the industry, combinatorial problems are increasingly frequent. This paper presents the interaction of Metaheuristics and Machine Learning, specifically as Machine Learning can be a support to enhance Metaheuristics. The resolution of the Set Covering Problem is presented, using the Grey Wolf Optimizer and Sine Cosine Algorithm metaheuristics that have been improved by adding a Q-Learning technique for the selection of a Discretization Scheme, using two-steps, intelligently choosing which transfer function to use and which binarization technique to apply in each iteration. The results show a better result for the Grey Wolf Optimizer with Q-Learning configuration, compared to other configurations in the literature, obtaining a better balance between exploration and exploitation.
在元启发式算子选择中嵌入q -学习:增强型二元灰狼优化器案例
在行业中存在的不同情况下,组合问题日益频繁。本文介绍了元启发式和机器学习的相互作用,特别是机器学习可以作为增强元启发式的支持。采用灰狼优化器和正弦余弦算法的元启发式方法,通过添加q -学习技术来选择离散化方案,采用两步,智能地选择在每次迭代中使用哪种传递函数和采用哪种二值化技术,提出了集覆盖问题的解决方案。结果表明,与文献中其他配置相比,Q-Learning配置的灰狼优化器效果更好,在探索和利用之间取得了更好的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信