FPGA Implementation of Matrix Decomposition Based FIR Filter

Hao Wang, Jia Yan
{"title":"FPGA Implementation of Matrix Decomposition Based FIR Filter","authors":"Hao Wang, Jia Yan","doi":"10.1109/APCCAS55924.2022.10090350","DOIUrl":null,"url":null,"abstract":"Matrix decomposition (MD) based finite impulse response filter (FIR) can synthesize any FIR filter with much fewer coefficients, without affecting the group delay and only scarcely affecting the frequency domain design error. Several researchers have advanced the theoretical analysis of a MD-FIR filter since it is first proposed. As the previous research is all about the theoretical analysis, this study presents the FPGA implementation of MD-FIR filters for the first time. First, a continuous coefficient MD-FIR filter is designed by using the well-developed method. Then, this MD-FIR filter is implemented in Matlab Simulink. Afterwards, the Verilog code for implementing a MD-FIR filter is automatically generated based on the Matlab Simulink implementation. Finally, based on the Verilog code, the MD-FIR filter is simulated and implemented in Field Programmable Gate Arrays (FPGA). The results verify the effectiveness of a MD-FIR filter.","PeriodicalId":243739,"journal":{"name":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"1891 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS55924.2022.10090350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Matrix decomposition (MD) based finite impulse response filter (FIR) can synthesize any FIR filter with much fewer coefficients, without affecting the group delay and only scarcely affecting the frequency domain design error. Several researchers have advanced the theoretical analysis of a MD-FIR filter since it is first proposed. As the previous research is all about the theoretical analysis, this study presents the FPGA implementation of MD-FIR filters for the first time. First, a continuous coefficient MD-FIR filter is designed by using the well-developed method. Then, this MD-FIR filter is implemented in Matlab Simulink. Afterwards, the Verilog code for implementing a MD-FIR filter is automatically generated based on the Matlab Simulink implementation. Finally, based on the Verilog code, the MD-FIR filter is simulated and implemented in Field Programmable Gate Arrays (FPGA). The results verify the effectiveness of a MD-FIR filter.
基于矩阵分解的FIR滤波器的FPGA实现
基于矩阵分解(MD)的有限脉冲响应滤波器(FIR)可以用更少的系数合成任意FIR滤波器,且不影响群延迟,对频域设计误差影响很小。自MD-FIR滤波器被首次提出以来,一些研究人员已经对其进行了理论分析。由于以往的研究都是理论分析,本研究首次提出了MD-FIR滤波器的FPGA实现。首先,利用已有的方法设计了连续系数的MD-FIR滤波器。然后,在Matlab Simulink中实现了该MD-FIR滤波器。然后,基于Matlab Simulink实现自动生成用于实现MD-FIR滤波器的Verilog代码。最后,基于Verilog代码,在现场可编程门阵列(FPGA)中对MD-FIR滤波器进行了仿真和实现。结果验证了MD-FIR滤波器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信