Named Entity Recognition for Clinical Portuguese Corpus with Conditional Random Fields and Semantic Groups

João Vitor Andrioli de Souza, Yohan Bonescki Gumiel, Lucas E. S. Oliveira, C. Moro
{"title":"Named Entity Recognition for Clinical Portuguese Corpus with Conditional Random Fields and Semantic Groups","authors":"João Vitor Andrioli de Souza, Yohan Bonescki Gumiel, Lucas E. S. Oliveira, C. Moro","doi":"10.5753/SBCAS.2019.6269","DOIUrl":null,"url":null,"abstract":"Considering the difficulties of extracting entities from Electronic Health Records (EHR) texts in Portuguese, we explore the Conditional Random Fields (CRF) algorithm to build a Named Entity Recognition (NER) system based on a corpus of clinical Portuguese data annotated by experts. We acquaint the challenges and methods to classify Abbreviations, Disorders, Procedures and Chemicals within the texts. By selecting a meaningful set of features, and parameters with the best performance the results demonstrate that the method is promising and may support other biomedical tasks, nonetheless, further experiments with more features, different architectures and sophisticated preprocessing steps are needed.","PeriodicalId":229405,"journal":{"name":"Anais do Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2019)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/SBCAS.2019.6269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Considering the difficulties of extracting entities from Electronic Health Records (EHR) texts in Portuguese, we explore the Conditional Random Fields (CRF) algorithm to build a Named Entity Recognition (NER) system based on a corpus of clinical Portuguese data annotated by experts. We acquaint the challenges and methods to classify Abbreviations, Disorders, Procedures and Chemicals within the texts. By selecting a meaningful set of features, and parameters with the best performance the results demonstrate that the method is promising and may support other biomedical tasks, nonetheless, further experiments with more features, different architectures and sophisticated preprocessing steps are needed.
基于条件随机场和语义组的临床葡萄牙语语料库命名实体识别
考虑到从葡萄牙语电子健康记录(EHR)文本中提取实体的困难,我们探索了条件随机场(CRF)算法,以专家注释的临床葡萄牙语数据语料库为基础构建命名实体识别(NER)系统。我们熟悉的挑战和方法,以分类缩写,疾病,程序和化学品内的文本。通过选择一组具有最佳性能的有意义的特征和参数,结果表明该方法是有前途的,并且可以支持其他生物医学任务,然而,需要更多特征,不同架构和复杂预处理步骤的进一步实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信