Classification of chest X-ray images using Machine Learning and Histogram of Oriented Gradients

Fellipe M. C. Barbosa, Anne M. P. Canuto
{"title":"Classification of chest X-ray images using Machine Learning and Histogram of Oriented Gradients","authors":"Fellipe M. C. Barbosa, Anne M. P. Canuto","doi":"10.5753/eniac.2021.18240","DOIUrl":null,"url":null,"abstract":"Este trabalho propõe um modelo de aprendizado de máquina para classificar e detectar a presença de pneumonia a partir de uma coleção de amostras de radiografias do tórax. Ao contrário da maioria dos trabalhos que utilizam abordagens de aprendizado profundo para classificar se a imagem é de um pulmão com pneumonia ou não, ou seja, duas classes para assim alcançar um desempenho de classificação notável, este modelo utiliza Histograma de Gradientes Orientados para extrair características de uma determinada imagem de raio-X de tórax e classificá-la em três classes, determinando se uma pessoa está ou não infectada com pneumonia viral ou bacteriana. Apesar de uma maior complexidade e utilização de modelos tradicionais de aprendizado de máquina, a maior acurácia alcançada foi de 91.32% superior a de trabalhos que utilizam redes profundas e buscam resolver o mesmo grau de complexidade.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"6 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Este trabalho propõe um modelo de aprendizado de máquina para classificar e detectar a presença de pneumonia a partir de uma coleção de amostras de radiografias do tórax. Ao contrário da maioria dos trabalhos que utilizam abordagens de aprendizado profundo para classificar se a imagem é de um pulmão com pneumonia ou não, ou seja, duas classes para assim alcançar um desempenho de classificação notável, este modelo utiliza Histograma de Gradientes Orientados para extrair características de uma determinada imagem de raio-X de tórax e classificá-la em três classes, determinando se uma pessoa está ou não infectada com pneumonia viral ou bacteriana. Apesar de uma maior complexidade e utilização de modelos tradicionais de aprendizado de máquina, a maior acurácia alcançada foi de 91.32% superior a de trabalhos que utilizam redes profundas e buscam resolver o mesmo grau de complexidade.
基于机器学习和定向梯度直方图的胸部x射线图像分类
这项工作提出了一个机器学习模型来分类和检测肺炎的存在,从收集的胸片样本。不像其他大多数的作品使用方式的深度学习分类的图像是一个肺炎或肺不,即两个类来达到表现显著的分类,这个模型使用梯度直方图正好来提取图像的特征x射线的胸腔和3类进行归类,确定一个人是否感染细菌或病毒性肺炎。尽管使用了更复杂的传统机器学习模型,但达到的最高精度比使用深度网络的工作高出91.32%,并寻求解决相同程度的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信