LIMBO self-test method using binary input and dithering signals

L. Bourgois, J. Juillard
{"title":"LIMBO self-test method using binary input and dithering signals","authors":"L. Bourgois, J. Juillard","doi":"10.1109/EUROCON.2013.6625272","DOIUrl":null,"url":null,"abstract":"An online approach to system identification based on the least-mean squares (LMS) algorithm is presented in this paper. This recursive method is actually an extended version of the LMS-like identification method based on binary observations (LIMBO), whose practical requirement is a simple comparator (1-bit quantizer). This method can be applied in the case of finite impulse response (FIR) systems in the presence of noise and offset at the comparator input. Moreover, contrary to classical LIMBO approach, the unknown parameters are rigorously identified, and not up to a positive multiplicative constant. The idea consists in introducing a known dithering signal at the input of the quantizer, which acts as reference amplitude and allows us to identify the gain of the system. Some simulation results are given in order to compare the performances of this extended version of LIMBO with the usual one, in terms of convergence speed and estimation quality.","PeriodicalId":136720,"journal":{"name":"Eurocon 2013","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurocon 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2013.6625272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An online approach to system identification based on the least-mean squares (LMS) algorithm is presented in this paper. This recursive method is actually an extended version of the LMS-like identification method based on binary observations (LIMBO), whose practical requirement is a simple comparator (1-bit quantizer). This method can be applied in the case of finite impulse response (FIR) systems in the presence of noise and offset at the comparator input. Moreover, contrary to classical LIMBO approach, the unknown parameters are rigorously identified, and not up to a positive multiplicative constant. The idea consists in introducing a known dithering signal at the input of the quantizer, which acts as reference amplitude and allows us to identify the gain of the system. Some simulation results are given in order to compare the performances of this extended version of LIMBO with the usual one, in terms of convergence speed and estimation quality.
LIMBO自检方法使用二进制输入和抖动信号
提出了一种基于最小均方算法的在线系统辨识方法。这种递归方法实际上是基于二进制观测的类lms识别方法(LIMBO)的扩展版本,其实际要求是一个简单的比较器(1位量化器)。这种方法可以应用于有限脉冲响应(FIR)系统在比较器输入存在噪声和偏移的情况下。此外,与经典的LIMBO方法相反,未知参数被严格识别,并且不高达正乘法常数。这个想法包括在量化器的输入处引入一个已知的抖动信号,它作为参考幅度,使我们能够识别系统的增益。为了比较该扩展版LIMBO与常规LIMBO在收敛速度和估计质量方面的性能,给出了一些仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信