{"title":"Overcoming Challenges for Achieving High in-situ Training Accuracy with Emerging Memories","authors":"Shanshi Huang, Xiaoyu Sun, Xiaochen Peng, Hongwu Jiang, Shimeng Yu","doi":"10.23919/DATE48585.2020.9116215","DOIUrl":null,"url":null,"abstract":"Embedded artificial intelligence (AI) prefers the adaptive learning capability when deployed in the field, thus in- situ training on-chip is required. Emerging non-volatile memories (eNVMs) are of great interests serving as analog synapses in deep neural network (DNN) on-chip acceleration due to its multilevel programmability. However, the asymmetry/nonlinearity in the conductance tuning remains a grand challenge for achieving high in-situ training accuracy. In addition, analog-to-digital converter (ADC) at the edge of the memory array introduces an additional challenge - quantization error for in-memory computing. In this work, we gain new insights and overcome these challenges through an algorithm-hardware co-optimization. We incorporate these hardware non-ideal effects into the DNN propagation and weight update steps. We evaluate on a VGG-like network for CIFAR-10 dataset, and we show that the asymmetry of the conductance tuning is no longer a limiting factor of in-situ training accuracy if exploiting adaptive \"momentum\" in the weight update rule. Even considering ADC quantization error, in-situ training accuracy could approach software baseline. Our results show much relaxed requirements that enable a variety of eNVMs for DNN acceleration on the embedded AI platforms.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Embedded artificial intelligence (AI) prefers the adaptive learning capability when deployed in the field, thus in- situ training on-chip is required. Emerging non-volatile memories (eNVMs) are of great interests serving as analog synapses in deep neural network (DNN) on-chip acceleration due to its multilevel programmability. However, the asymmetry/nonlinearity in the conductance tuning remains a grand challenge for achieving high in-situ training accuracy. In addition, analog-to-digital converter (ADC) at the edge of the memory array introduces an additional challenge - quantization error for in-memory computing. In this work, we gain new insights and overcome these challenges through an algorithm-hardware co-optimization. We incorporate these hardware non-ideal effects into the DNN propagation and weight update steps. We evaluate on a VGG-like network for CIFAR-10 dataset, and we show that the asymmetry of the conductance tuning is no longer a limiting factor of in-situ training accuracy if exploiting adaptive "momentum" in the weight update rule. Even considering ADC quantization error, in-situ training accuracy could approach software baseline. Our results show much relaxed requirements that enable a variety of eNVMs for DNN acceleration on the embedded AI platforms.