Extension of Generalized Hammerstein model to non-polynomial inputs

A. Novák, L. Simon, P. Lotton
{"title":"Extension of Generalized Hammerstein model to non-polynomial inputs","authors":"A. Novák, L. Simon, P. Lotton","doi":"10.1109/EUSIPCO.2016.7760202","DOIUrl":null,"url":null,"abstract":"The Generalized Hammerstein model has been successfully used during last few years in many physical applications to describe the behavior of a nonlinear system under test. The main advantage of such a nonlinear model is its capability to model efficiently nonlinear systems while keeping the computational cost low. On the other hand, this model can not predict complicated nonlinear behaviors such as hysteretic one. In this paper, we propose an extension of the Generalized Hammerstein model to a model with non polynomial nonlinear inputs that allows modeling more complicated nonlinear systems. A simulation provided in this paper shows a good agreement between the model and the hysteretic nonlinear system under test.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Generalized Hammerstein model has been successfully used during last few years in many physical applications to describe the behavior of a nonlinear system under test. The main advantage of such a nonlinear model is its capability to model efficiently nonlinear systems while keeping the computational cost low. On the other hand, this model can not predict complicated nonlinear behaviors such as hysteretic one. In this paper, we propose an extension of the Generalized Hammerstein model to a model with non polynomial nonlinear inputs that allows modeling more complicated nonlinear systems. A simulation provided in this paper shows a good agreement between the model and the hysteretic nonlinear system under test.
广义Hammerstein模型在非多项式输入上的推广
近年来,广义Hammerstein模型在许多物理应用中被成功地用于描述被测非线性系统的行为。这种非线性模型的主要优点是它能够有效地建模非线性系统,同时保持较低的计算成本。另一方面,该模型不能预测复杂的非线性行为,如滞后行为。本文提出了将广义Hammerstein模型扩展为具有非多项式非线性输入的模型,从而可以对更复杂的非线性系统进行建模。仿真结果表明,该模型与被测滞回非线性系统具有较好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信