{"title":"Single-V/sub DD/ and single-V/sub T/ super-drowsy techniques for low-leakage high-performance instruction caches","authors":"N. Kim, K. Flautner, D. Blaauw, T. Mudge","doi":"10.1145/1013235.1013254","DOIUrl":null,"url":null,"abstract":"In this paper, we present a circuit technique that supports a super-drowsy mode with a single-V/sub DD/. In addition, we perform a detailed working set analysis for various cache line update policies for placing lines in a drowsy state. The analysis presents a policy for an instruction cache and shows it is as good as or better than more complex schemes proposed in the past. Furthermore, as air alternative to using high-threshold devices to reduce the bitline leakage through access transistors in drowsy caches, we propose a gated bitline precharge technique. A single threshold process is now sufficient. The gated precharge employs a simple but effective predictor that almost completely hides any performance loss incurred by the transitions between sub-banks. A 64-entry predictor with 3 bits per entry reduces the run-time increase by 78%, which is as effective as previous proposals that used content addressable predictors with 40 bits per entry. Overall, the combination of the proposed techniques reduces the leakage power by 72% with negligible (0.4%) run-time increase.","PeriodicalId":120002,"journal":{"name":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 International Symposium on Low Power Electronics and Design (IEEE Cat. No.04TH8758)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1013235.1013254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44
Abstract
In this paper, we present a circuit technique that supports a super-drowsy mode with a single-V/sub DD/. In addition, we perform a detailed working set analysis for various cache line update policies for placing lines in a drowsy state. The analysis presents a policy for an instruction cache and shows it is as good as or better than more complex schemes proposed in the past. Furthermore, as air alternative to using high-threshold devices to reduce the bitline leakage through access transistors in drowsy caches, we propose a gated bitline precharge technique. A single threshold process is now sufficient. The gated precharge employs a simple but effective predictor that almost completely hides any performance loss incurred by the transitions between sub-banks. A 64-entry predictor with 3 bits per entry reduces the run-time increase by 78%, which is as effective as previous proposals that used content addressable predictors with 40 bits per entry. Overall, the combination of the proposed techniques reduces the leakage power by 72% with negligible (0.4%) run-time increase.