Probabilistic model building Genetic Network Programming using multiple probability vectors

Xianneng Li, S. Mabu, M. K. Mainali, K. Hirasawa
{"title":"Probabilistic model building Genetic Network Programming using multiple probability vectors","authors":"Xianneng Li, S. Mabu, M. K. Mainali, K. Hirasawa","doi":"10.1109/TENCON.2010.5686113","DOIUrl":null,"url":null,"abstract":"As an extension of GA and GP, a new evolutionary algorithm named Genetic Network Programming (GNP) has been proposed. GNP uses the directed graph structure to represent its solutions, which can express the dynamic environment efficiently. The reusable nodes of GNP can construct compact structures, leading to a good performance in complex problems. In addition, a probabilistic model building GNP named GNP with Estimation of Distribution Algorithm (GNP-EDA) has been proposed to improve the evolution efficiency. GNP-EDA outperforms the conventional GNP by constructing a probabilistic model by estimating the probability distribution from the selected elite individuals of the previous generation. In this paper, a probabilistic model building GNP with multiple probability vectors (PMBGNPM) is proposed. In the proposed algorithm, multiple probability vectors are used in order to escape from premature convergence, and genetic operations like crossover and mutation are carried out to the probability vectors to maintain the diversities of the populations. The proposed algorithm is applied to the controller of autonomous robots and its performance is evaluated.","PeriodicalId":101683,"journal":{"name":"TENCON 2010 - 2010 IEEE Region 10 Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2010 - 2010 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2010.5686113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

As an extension of GA and GP, a new evolutionary algorithm named Genetic Network Programming (GNP) has been proposed. GNP uses the directed graph structure to represent its solutions, which can express the dynamic environment efficiently. The reusable nodes of GNP can construct compact structures, leading to a good performance in complex problems. In addition, a probabilistic model building GNP named GNP with Estimation of Distribution Algorithm (GNP-EDA) has been proposed to improve the evolution efficiency. GNP-EDA outperforms the conventional GNP by constructing a probabilistic model by estimating the probability distribution from the selected elite individuals of the previous generation. In this paper, a probabilistic model building GNP with multiple probability vectors (PMBGNPM) is proposed. In the proposed algorithm, multiple probability vectors are used in order to escape from premature convergence, and genetic operations like crossover and mutation are carried out to the probability vectors to maintain the diversities of the populations. The proposed algorithm is applied to the controller of autonomous robots and its performance is evaluated.
基于多概率向量的遗传网络规划概率模型构建
作为遗传算法和遗传网络规划的扩展,提出了一种新的进化算法——遗传网络规划。GNP采用有向图结构表示其解,能有效地表达动态环境。GNP的可重用节点可以构造紧凑的结构,从而在复杂问题中具有良好的性能。此外,为了提高进化效率,提出了一种基于分布估计算法的概率模型构建方法GNP。通过估计上一代精英个体的概率分布,构建了一个概率模型,从而优于传统GNP。本文提出了一种多概率向量构建GNP的概率模型(PMBGNPM)。在该算法中,为了避免过早收敛,使用了多个概率向量,并对概率向量进行了交叉、突变等遗传操作,以保持种群的多样性。将该算法应用于自主机器人的控制器,并对其性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信