Modern feature extraction methods and learning algorithms in the field of industrial acoustic signal processing

Tibor Dobján, Elvira D. Antal
{"title":"Modern feature extraction methods and learning algorithms in the field of industrial acoustic signal processing","authors":"Tibor Dobján, Elvira D. Antal","doi":"10.1109/SISY.2017.8080589","DOIUrl":null,"url":null,"abstract":"Identification of acoustic events is a challanging field of signal processing. Fast identification algorithms would be applicable for real-time event detection in industrial projects. Event detection is usually done by classifying a specific feature of windows of time series. This paper studies the application of the novel skeleton method for feature extraction. We compare it with traditional feature extraction methods on high frequency sampled vibration data, which was measured by a Gleeble 3800 thermo-mechanical physical simulator. Barkhausen noise and other background noises are hardening the analysis.","PeriodicalId":352891,"journal":{"name":"2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2017.8080589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Identification of acoustic events is a challanging field of signal processing. Fast identification algorithms would be applicable for real-time event detection in industrial projects. Event detection is usually done by classifying a specific feature of windows of time series. This paper studies the application of the novel skeleton method for feature extraction. We compare it with traditional feature extraction methods on high frequency sampled vibration data, which was measured by a Gleeble 3800 thermo-mechanical physical simulator. Barkhausen noise and other background noises are hardening the analysis.
工业声信号处理领域的现代特征提取方法与学习算法
声事件的识别是信号处理中一个具有挑战性的领域。快速识别算法将适用于工业项目中的实时事件检测。事件检测通常是通过对时间序列窗口的特定特征进行分类来完成的。本文研究了新型骨架方法在特征提取中的应用。利用Gleeble 3800热-机械物理模拟器对高频采样振动数据进行了特征提取,并与传统特征提取方法进行了比较。巴克豪森噪声和其他背景噪声强化了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信