Learning Path Tracking for Real Car-like Mobile Robots From Simulation

Danial Kamran, Junyi Zhu, M. Lauer
{"title":"Learning Path Tracking for Real Car-like Mobile Robots From Simulation","authors":"Danial Kamran, Junyi Zhu, M. Lauer","doi":"10.1109/ECMR.2019.8870947","DOIUrl":null,"url":null,"abstract":"In this paper we propose a Reinforcement Learning (RL) algorithm for path tracking of a real car-like robot. The RL network is trained in simulation and then evaluated on a small racing car without modification. We provide a big number of training data during off-line simulation using a random path generator to cover different curvatures and initial positions, headings and velocities of the vehicle for the RL agent. Comparing to similar RL based algorithms, we utilize Convolutional Neural Network (CNN) as image embedder for estimating useful information about current and future position of the vehicle relative to the path. Evaluations for running the trained agent on the real car show that the RL agent can control the car smoothly and reduce the velocity adaptively to follow a sample track. We also compared the proposed approach with a conventional lateral controller and results show smoother maneuvers and smaller cross-track errors for the proposed algorithm.","PeriodicalId":435630,"journal":{"name":"2019 European Conference on Mobile Robots (ECMR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2019.8870947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper we propose a Reinforcement Learning (RL) algorithm for path tracking of a real car-like robot. The RL network is trained in simulation and then evaluated on a small racing car without modification. We provide a big number of training data during off-line simulation using a random path generator to cover different curvatures and initial positions, headings and velocities of the vehicle for the RL agent. Comparing to similar RL based algorithms, we utilize Convolutional Neural Network (CNN) as image embedder for estimating useful information about current and future position of the vehicle relative to the path. Evaluations for running the trained agent on the real car show that the RL agent can control the car smoothly and reduce the velocity adaptively to follow a sample track. We also compared the proposed approach with a conventional lateral controller and results show smoother maneuvers and smaller cross-track errors for the proposed algorithm.
基于仿真的真实类车移动机器人学习路径跟踪
在本文中,我们提出了一种用于真实类车机器人路径跟踪的强化学习(RL)算法。对RL网络进行了仿真训练,然后在一辆未改装的小型赛车上进行了测试。在离线仿真过程中,我们使用随机路径生成器为RL agent提供了大量的训练数据,以覆盖车辆的不同曲率和初始位置、航向和速度。与类似的基于强化学习的算法相比,我们利用卷积神经网络(CNN)作为图像嵌入器来估计车辆相对于路径的当前和未来位置的有用信息。对训练好的智能体在真实汽车上的运行评估表明,RL智能体能够平稳地控制汽车并自适应降低速度以跟随样本轨迹。我们还将所提出的方法与传统的横向控制器进行了比较,结果表明所提出的算法具有更平滑的机动和更小的交叉轨迹误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信