{"title":"SiLago-CoG: Coarse-Grained Grid-Based Design for Near Tape-Out Power Estimation Accuracy at High Level","authors":"Syed M. A. H. Jafri, Nasim Farahini, A. Hemani","doi":"10.1109/ISVLSI.2017.15","DOIUrl":null,"url":null,"abstract":"It is well known that ASICs have orders of magnitude higher power efficiency than general propose processors. However, due to the high engineering and manufacturing cost only handful of companies can afford to design ASICs. To reduce this cost numerous high-level synthesis tools have emerged since last 2-3 decades. In spite of these tools, ASIC design is still considered expensive because they fail to accurately predict the cost metrics. The inaccuracy is costly as it results in multiple iterations between RTL, logic synthesis, and physical design. The major reason behind this inaccuracy, at high level, is unavailability of information like wiring, orientation, and placement of hardware blocks. To tackle this issue, recent works have proposed to raise the abstraction of the physical design from standard cells to micro-architectural blocks physically organized in a structured grid based layout scheme. While these works have been successful in accurately predicting area and timing, to the best of our knowledge their effectiveness in accurately estimating power is yet to be determined. SiLago-CoG provides an efficient technique to characterize these blocks and estimate power at high level. Simulation and synthesis results reveal that SiLago-CoG provides up to 15X better power estimates in 680X less time at the cost of up to 50% additional area, compared to state-of-the-art.","PeriodicalId":187936,"journal":{"name":"2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2017.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
It is well known that ASICs have orders of magnitude higher power efficiency than general propose processors. However, due to the high engineering and manufacturing cost only handful of companies can afford to design ASICs. To reduce this cost numerous high-level synthesis tools have emerged since last 2-3 decades. In spite of these tools, ASIC design is still considered expensive because they fail to accurately predict the cost metrics. The inaccuracy is costly as it results in multiple iterations between RTL, logic synthesis, and physical design. The major reason behind this inaccuracy, at high level, is unavailability of information like wiring, orientation, and placement of hardware blocks. To tackle this issue, recent works have proposed to raise the abstraction of the physical design from standard cells to micro-architectural blocks physically organized in a structured grid based layout scheme. While these works have been successful in accurately predicting area and timing, to the best of our knowledge their effectiveness in accurately estimating power is yet to be determined. SiLago-CoG provides an efficient technique to characterize these blocks and estimate power at high level. Simulation and synthesis results reveal that SiLago-CoG provides up to 15X better power estimates in 680X less time at the cost of up to 50% additional area, compared to state-of-the-art.