Takuya Mototsuka, Akira Hara, J. Kushida, T. Takahama
{"title":"Genetic programming with multiple initial populations generated by simulated annealing","authors":"Takuya Mototsuka, Akira Hara, J. Kushida, T. Takahama","doi":"10.1109/IWCIA.2013.6624797","DOIUrl":null,"url":null,"abstract":"Genetic Programming (GP) and Simulated Annealing Programming (SAP) are typical metaheuristic methods for automatic programming. We propose a new method, Parallel - Genetic and Annealing Programming (P-GAP) which combines GP and SAP. In P-GAP, multiple initial populations are generated by SAP. Respective populations evolve by parallel GP. As the generation proceeds, populations are integrated gradually. To examine the effectiveness, we compared P-GAP with the conventional methods in five test problems. As a result, P-GAP showed better performance than GP and SAP.","PeriodicalId":257474,"journal":{"name":"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA.2013.6624797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Genetic Programming (GP) and Simulated Annealing Programming (SAP) are typical metaheuristic methods for automatic programming. We propose a new method, Parallel - Genetic and Annealing Programming (P-GAP) which combines GP and SAP. In P-GAP, multiple initial populations are generated by SAP. Respective populations evolve by parallel GP. As the generation proceeds, populations are integrated gradually. To examine the effectiveness, we compared P-GAP with the conventional methods in five test problems. As a result, P-GAP showed better performance than GP and SAP.