Expectation-Maximization x Self-Organizing Maps for Image Classification

T. Korting, Leila Maria Garcia Fonseca, F. Bação
{"title":"Expectation-Maximization x Self-Organizing Maps for Image Classification","authors":"T. Korting, Leila Maria Garcia Fonseca, F. Bação","doi":"10.1109/SITIS.2008.35","DOIUrl":null,"url":null,"abstract":"To deal with the huge volume of information provided by remote sensing satellites, which produce images used for agriculture monitoring, urban planning, deforestation detection and so on, several algorithms for image classification have been proposed in the literature. This article compares two approaches, called Expectation-Maximization (EM) and Self-Organizing Maps (SOM) applied to unsupervised image classification, i.e. data clustering without direct intervention of specialist guidance. Remote sensing images are used to test both algorithms, and results are shown concerning visual quality, matching rate and processing time.","PeriodicalId":202698,"journal":{"name":"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2008.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

To deal with the huge volume of information provided by remote sensing satellites, which produce images used for agriculture monitoring, urban planning, deforestation detection and so on, several algorithms for image classification have been proposed in the literature. This article compares two approaches, called Expectation-Maximization (EM) and Self-Organizing Maps (SOM) applied to unsupervised image classification, i.e. data clustering without direct intervention of specialist guidance. Remote sensing images are used to test both algorithms, and results are shown concerning visual quality, matching rate and processing time.
期望-最大化x自组织图像分类映射
为了处理遥感卫星提供的海量信息,产生用于农业监测、城市规划、森林砍伐检测等领域的图像,文献中提出了几种图像分类算法。本文比较了两种应用于无监督图像分类的方法,即在没有专家指导的直接干预下的数据聚类,即期望最大化(EM)和自组织地图(SOM)。利用遥感图像对两种算法进行了测试,并给出了视觉质量、匹配率和处理时间方面的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信